Adjoint and Inverse of a Square Matrix MCQ Quiz - Objective Question with Answer for Adjoint and Inverse of a Square Matrix - Download Free PDF
Last updated on Jul 4, 2025
Latest Adjoint and Inverse of a Square Matrix MCQ Objective Questions
Adjoint and Inverse of a Square Matrix Question 1:
Let \(\mathrm{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(\mathrm{B}=\left[\begin{array}{cc}1 & -\mathrm{i} \\ 0 & 1\end{array}\right] \), where \(\mathrm{i}=\sqrt{-1} \). If M = ATBA, then the inverse of the matrix AM2023AT is
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 1 Detailed Solution
Calculation:
\(\mathrm{AA}^{\mathrm{T}}=\left[\begin{array}{cc} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{array}\right]\left[\begin{array}{cc} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]\)
\(\mathrm{B}^{2}=\left[\begin{array}{cc} 1 & -\mathrm{i} \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 1 & -\mathrm{i} \\ 0 & 1 \end{array}\right]=\left[\begin{array}{cc} 1 & -2 \mathrm{i} \\ 0 & 1 \end{array}\right] \)
\(\mathrm{B}^{3}=\left[\begin{array}{cc} 1 & -3 \mathrm{i} \\ 0 & 1 \end{array}\right]\)
.
.
.
\(\mathrm{B}^{2023}=\left[\begin{array}{cc} 1 & -2023 \mathrm{i} \\ 0 & 1 \end{array}\right]\)
M = ATBA
M2 = M.M = ATBA ATBA = ATB2A
M3 = M2.M = ATB2AATBA = ATB3A
.
.
.
M2023 = …………… ATB2023A
AM2023AT = AATB2023 AAT = B2023
\(=\left[\begin{array}{cc} 1 & -2023 \mathrm{i} \\ 0 & 1 \end{array}\right] \)
Inverse of (AM2023AT) is \(\left[\begin{array}{cc} 1 & 2023 \mathrm{i} \\ 0 & 1 \end{array}\right] \)
Hence, the correct answer is Option 4
Adjoint and Inverse of a Square Matrix Question 2:
Let x, y, z > 1 and
\(\mathrm{A}=\left[\begin{array}{lll} 1 & \log _{\mathrm{x}} \mathrm{y} & \log _{\mathrm{x}} \mathrm{z} \\ \log _{\mathrm{y}} \mathrm{x} & 2 & \log _{\mathrm{y}} \mathrm{z} \\ \log _{\mathrm{z}} \mathrm{x} & \log _{\mathrm{z}} \mathrm{y} & 3 \end{array}\right] \).
Then |adj(adjA2)| is equal to
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 2 Detailed Solution
Concept:
Determinant of Adjoint of a Matrix:
- If \( A \) is a square matrix of order \( n \), then:
- \( |\text{adj}(A)| = |A|^{n-1} \)
- \( |\text{adj}(\text{adj}(A))| = |A|^{(n-1)^2} \)
- \( \text{adj}(A^2) = (\text{adj}(A))^2 \) if \( A \) is invertible
- Hence, \( |\text{adj}(\text{adj}(A^2))| = |\text{adj}((\text{adj}(A))^2)| = |\text{adj}(B^2)| \) where \( B = \text{adj}(A) \)
- Using \( |\text{adj}(B^2)| = |B^2|^{n-1} = (|B|^2)^{n-1} = |B|^{2(n-1)} \)
- Also, \( |B| = |\text{adj}(A)| = |A|^{n-1} \)
Matrix Determinant:
- \( |A| \) represents the scalar determinant value of matrix \( A \)
- If \( A \) is 3 × 3, then \( |\text{adj}(\text{adj}(A^2))| = |A|^{2(n-1)^2} = |A|^8 \)
Calculation:
Given,
\( A = \begin{bmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 2 & \log_y z \\ \log_z x & \log_z y & 3 \end{bmatrix} \)
Let \( a = \log_x y,\ b = \log_x z,\ c = \log_y z \)
⇒ \( \log_y x = \frac{1}{a},\ \log_z x = \frac{1}{b},\ \log_z y = \frac{1}{c} \)
⇒ \( A = \begin{bmatrix} 1 & a & b \\ \frac{1}{a} & 2 & c \\ \frac{1}{b} & \frac{1}{c} & 3 \end{bmatrix} \)
⇒ \( |A| = 1 \cdot \begin{vmatrix} 2 & c \\ \frac{1}{c} & 3 \end{vmatrix} - a \cdot \begin{vmatrix} \frac{1}{a} & c \\ \frac{1}{b} & 3 \end{vmatrix} + b \cdot \begin{vmatrix} \frac{1}{a} & 2 \\ \frac{1}{b} & \frac{1}{c} \end{vmatrix} \)
⇒ \( |A| = (6 - 1) - a\left(\frac{3}{a} - \frac{c}{b}\right) + b\left(\frac{1}{ac} - \frac{2}{b}\right) \)
⇒ \( |A| = 5 - (3 - \frac{ac}{b}) + (\frac{b}{ac} - 2) \)
⇒ \( |A| = \frac{ac}{b} + \frac{b}{ac} \)
Using values: \( x = 2,\ y = 4,\ z = 8 \Rightarrow a = 2,\ b = 3,\ c = \frac{3}{2} \)
⇒ \( |A| = \frac{2 \times \frac{3}{2}}{3} + \frac{3}{2 \times \frac{3}{2}} = 1 + 1 = 2 \)
Matrix is of order \( n = 3 \)
⇒ \( |\text{adj}(\text{adj}(A^2))| = |A|^{2(n-1)^2} = 2^{2 \times 4} = 2^8 \)
∴ hence Option2 is the correct answer.
Adjoint and Inverse of a Square Matrix Question 3:
If \(\rm A=\begin{bmatrix} x & 2 \\\ 4 & 3 \end{bmatrix}\) and \(\rm A ^{-1}=\begin{bmatrix} {1\over8} & {-1\over 12} \\\ {-1\over 6}& {4\over 9} \end{bmatrix}\), then find the value of x?
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 3 Detailed Solution
Concept:
A × A-1 = I, where I is an identity matrix
|A| = \(\rm 1\over {|A^{-1}|}\)
Calculation:
Given: \(\rm A=\begin{bmatrix} x & 2 \\\ 4 & 3 \end{bmatrix}\) and \(\rm A ^{-1}=\begin{bmatrix} {1\over8} & {-1\over 12} \\\ {-1\over 6}& {4\over 9} \end{bmatrix}\)
|A-1| = \(\rm {4\over 72} - {1\over 72} = {3\over 72} = {1\over 24}\)
|A| = \(\rm {1 \over {|A^{-1}|}}\) = 24
⇒ 3x - 8 = 24
∴ x = \(\rm 32\over 3\)
Adjoint and Inverse of a Square Matrix Question 4:
Comprehension:
Direction : Consider the following for the items that follow :
Let \(\rm A=\begin{bmatrix}3&-3&4\\\ 2&-3&4\\\ 0&-1&1\end{bmatrix}\)
What is A-1 equal to?
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 4 Detailed Solution
Explanation:
Given
⇒ \(adj(A) = \rm \begin{bmatrix}1&-1&0\\\ -2&3&-4\\\ -2&3&-3\end{bmatrix}\)
Now, A-1 = \(\frac{1}{|A|} (Adj(A))\)
= \( \rm \begin{bmatrix}1&-1&0\\\ -2&3&-4\\\ -2&3&-3\end{bmatrix}\)
∴ Option (a) is correct.
Adjoint and Inverse of a Square Matrix Question 5:
Comprehension:
Direction : Consider the following for the items that follow :
Let \(\rm A=\begin{bmatrix}3&-3&4\\\ 2&-3&4\\\ 0&-1&1\end{bmatrix}\)
What is A(adj A) equal to?
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 5 Detailed Solution
Explanation:
Given:
\(\rm A=\begin{bmatrix}3&-3&4\\\ 2&-3&4\\\ 0&-1&1\end{bmatrix} \)
Now, |A| = 3(–3 + 4) –2(–3 + 4) + 0 = 3 – 2 = 1
A(adjA) = |A| I = I
∴ Option (d) is correct.
Top Adjoint and Inverse of a Square Matrix MCQ Objective Questions
If \(\rm A^{-1}=\begin{bmatrix} 1& 2& 3\\ 2& 4& 3\\ 3& 1& 6\end{bmatrix}=\frac{adj(A)}{k}\), then k = ?
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 6 Detailed Solution
Download Solution PDFConcept:
For an invertible matrix A:
- A-1 = \(\rm \frac{adj(A)}{|A|}\).
- |A-1| = |A|-1 = \(\rm \frac{1}{|A|}\).
Calculation:
\(\rm A^{-1}=\begin{bmatrix} 1& 2& 3\\ 2& 4& 3\\ 3& 1& 6\end{bmatrix}=\frac{adj(A)}{k}\) -----(1)
From the definition of the inverse of a matrix,
A-1 = \(\rm \frac{adj(A)}{|A|}\) -----(2)
Comparing equation (1) & (2), we get
k = |A|
Using the properties of the determinant of inverse of a matrix, we have:
k = |A| = \(\rm \frac{1}{|A^{-1}|}\) ----(3)
We know,
A.A-1 = I
⇒ |A.A-1| = |I| = 1
⇒ |A| |A-1| = 1
⇒ |A| = 1/ |A-1| ....(4)
Now,
|A-1| = 1(24 - 3) + 2(9 - 12) + 3(2 - 12) = 21 - 6 - 30 = - 15.
|A-1| = -15
Therefore, from equation (3)
k = \(\rm - \frac1{15}\).
Mistake PointsNote that, we have A-1 matrix, not an A matrix. So to find the value of k, don't you have to use relation |A| = 1/|A-1|
If \(\rm A=\begin{bmatrix} x & 2 \\\ 4 & 3 \end{bmatrix}\) and \(\rm A ^{-1}=\begin{bmatrix} {1\over8} & {-1\over 12} \\\ {-1\over 6}& {4\over 9} \end{bmatrix}\), then find the value of x?
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 7 Detailed Solution
Download Solution PDFConcept:
A × A-1 = I, where I is an identity matrix
|A| = \(\rm 1\over {|A^{-1}|}\)
Calculation:
Given: \(\rm A=\begin{bmatrix} x & 2 \\\ 4 & 3 \end{bmatrix}\) and \(\rm A ^{-1}=\begin{bmatrix} {1\over8} & {-1\over 12} \\\ {-1\over 6}& {4\over 9} \end{bmatrix}\)
|A-1| = \(\rm {4\over 72} - {1\over 72} = {3\over 72} = {1\over 24}\)
|A| = \(\rm {1 \over {|A^{-1}|}}\) = 24
⇒ 3x - 8 = 24
∴ x = \(\rm 32\over 3\)
If A2 - 2A - I = 0,then inverse of A is
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 8 Detailed Solution
Download Solution PDFConcept:
Properties of Matrices Inverse:
If A and B are the non-singular matrices, then the inverse matrix should have the following properties
- (AB) - 1 = B - 1 A - 1
- (A - 1) - 1 = A
- (AT) - 1 = (A - 1)T
- (KA - 1) = \(\rm \frac{1}{k}\;{A^{ - 1}}\) for any K ≠ 0
- (An) - 1 = (A - 1)n
- AA - 1 = A - 1A = I
Calculation:
Given: A2 - 2A - I = 0
⇒ A.A - 2A = I
Post multiply by A-1, we get
⇒ AAA-1 - 2AA-1 = IA-1
⇒ AI - 2I = A-1 [∵ AA - 1 = A - 1A = I]
∴ A-1 = A - 2
the inverse of A is A - 2
If A is a singular matrix, then A[adj(A)] = ?
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 9 Detailed Solution
Download Solution PDFConcept:
For an invertible matrix A:
- A-1 = \(\rm \frac{adj(A)}{|A|}\).
- |A-1| = |A|-1 = \(\rm \frac{1}{|A|}\).
Calculation:
From the definition of the inverse of a matrix, \({{\rm{A}}^{ - 1}} = \frac{{{\rm{adj}}\left( {\rm{A}} \right)}}{{\left| {\rm{A}} \right|}}\).
Multiplying both sides by A, we get:
A(A-1) = \(\rm \frac{A[adj(A)]}{|A|}\)
⇒ |A| I = A[adj(A)]
But it is given that A is a singular matrix, i.e. |A| = 0.
∴ A[adj(A)] = 0, or A[adj(A)] is a null matrix.
If \(\begin{bmatrix} 1 & -3 & 2 \\\ 2 & -8 & 5 \\\ 4 & 2 & λ \end{bmatrix}\) is not an invertible matrix, then what is the value of λ ?
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 10 Detailed Solution
Download Solution PDFConcept:
If the matrix A is not an invertible matrix then | A | = 0
If the matrix A is the non-singular matrix then | A | ≠ 0
Calculations:
Given, A = \(\begin{bmatrix} 1 & -3 & 2 \\\ 2 & -8 & 5 \\\ 4 & 2 & λ \end{bmatrix}\)is not an invertible matrix
As we know, If the matrix A is non invertible matrix then | A | = 0
⇒ \(\begin{vmatrix} 1 & -3 & 2 \\\ 2 & -8 & 5 \\\ 4 & 2 & λ \end{vmatrix}\) = 0
⇒ 1\(\rm (-8\lambda - 10)+3(2\lambda-20)+2(4+32)\) = 0
⇒ \(\rm -8\lambda - 10+6\lambda-60+72 = 0\)
⇒\(\rm -2\lambda +2 = 0\)
⇒\(\rm \lambda = 1\)
Hence, If \(\begin{bmatrix} 1 & -3 & 2 \\\ 2 & -8 & 5 \\\ 4 & 2 & λ \end{bmatrix}\) is not an invertible matrix, then the value of λ is 1.
If A is a 3×3 square matrix such that |A| = 4, then find the value of |A × adj(A)|.
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 11 Detailed Solution
Download Solution PDFConcept:
Determinants:
- For two invertible matrices A and B, we have: det(A × B) = det(A) × det(B), which can also be written as |A × B| = |A| × |B|.
- |adj(A)| = |A|n - 1, where n is the order of the square matrix A.
Calculation:
We know that |adj(A)| = |A|n - 1, where n is the order of the square matrix A.
Now, |A × adj(A)| = |A × |A|n - 1| = |A|n.
The order of the given matrix A is n = 3 and |A| = 4.
∴ |A × adj(A)| = |A|n = 43 = 64.
For a invertible matrix A if A(adj A) \(=\begin{bmatrix} 10 & 0 \\\ 0 & 10 \end{bmatrix}\) then |A| =
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 12 Detailed Solution
Download Solution PDFConcept:
Let A is an invertible matrix
As we know, AA-1 = I
\( ⇒ {\rm{A}} × \left( {\frac{{{\rm{Adj\;A}}}}{{\det {\rm{A}}}}} \right) = {\rm{I}}\)
⇒ A (Adj A) = det A × I = |A|I
Calculation:
Given: A(adj A) \(=\begin{bmatrix} 10 & 0 \\\ 0 & 10 \end{bmatrix}\)
⇒ A(adj A) \(= 10\begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix} = 10\rm I\)
As we know A (Adj A) = det A × I
∴ det A = |A| = 10
If \(\rm A=\begin{bmatrix}1 & 0 & 2 \\ 5 & 1 & \rm x \\ 1 & 1 & 1 \end{bmatrix}\) is a singular matrix, then the value of x is equal to:
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 13 Detailed Solution
Download Solution PDFConcept:
Singular Matrix:
- A Singular Matrix is a matrix whose 'Multiplicative Inverse' does not exist. i.e. A × A-1 ≠ I.
- A matrix is singular if and only if its determinant is zero. i.e. |A| = 0.
Calculation:
For the matrix to be singular, its determinant should be zero.
\(\rm |A|=\begin{vmatrix}1 & 0 & 2 \\ 5 & 1 & \rm x \\ 1 & 1 & 1 \end{vmatrix}=0\)
⇒ 1(1 × 1 - 1 × x) + 0(1 × x - 1 × 5) + 2(5 × 1 - 1 × 1) = 0
⇒ 1 - x + 0 + 8 = 0
⇒ x = 9.
If the inverse of the matrix A =\(\begin{bmatrix}3 & 1 & 2 \\ 4&2 & 1\\ 2 & a & 1 \end{bmatrix}\)does not exist then the value of a is
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 14 Detailed Solution
Download Solution PDFConcept:
Consider a matrix A and let its inverse be A-1
\(\rm {A^{ - 1}} = \frac{{{\rm{adj\;}}\left( {\rm{A}} \right){\rm{\;}}}}{{{\rm{det\;}}\left( {\rm{A}} \right)}}\)
Here; adj (A) is adjoint of matrix A and det (A) is determinant of matrix A.
⇒ If det (A) ≠ 0, so the inverse of a matrix exists.
⇒ If det (A) = 0, so inverse of a matrix does not exist.
Calculation:
Given A = \(\begin{bmatrix}3 & 1 & 2 \\ 4&2 & 1\\ 2 & a & 1 \end{bmatrix}\)
For A-1 does not exist the |A| = 0
|A| = \(\begin{vmatrix}3 & 1 & 2 \\ 4&2 & 1\\ 2 & a & 1 \end{vmatrix}\) = 0
|A| = 3(2 - a) - 1(4 - 2) + 2(4a - 4)
|A| = 6 - 3a - 2 + 8a - 8
|A| = 5a - 4
|A| = 0
5a - 4 = 0
∴ a = \(\frac 4 5\)
If A is an identity matrix of order 3, then its inverse (A-1)
Answer (Detailed Solution Below)
Adjoint and Inverse of a Square Matrix Question 15 Detailed Solution
Download Solution PDFConcept
If A is any matrix of order n and it’s inverse exists, then we can write
AA-1 = A-1A = I, where I = Identity matrix of order n
Calculation
Given: A is an identity matrix of order 3 i.e. A = I
Multiplying both sides by A-1 we get
⇒ AA-1 = IA-1
⇒ I = A-1 [∵ A matrix multiplied by the identity matrix is the matrix itself i.e. AI = A]
⇒ A = A-1