Linear Integral Equations MCQ Quiz - Objective Question with Answer for Linear Integral Equations - Download Free PDF

Last updated on Apr 5, 2025

Latest Linear Integral Equations MCQ Objective Questions

Linear Integral Equations Question 1:

Let K(x, t) = t - x be the kernel of a Volterra integral equation and λ = 1. Then which of the following is the resolvent kernel

  1. cos(t - x)
  2. et-x
  3.  sin(t - x)
  4. cosh(t - x)

Answer (Detailed Solution Below)

Option 3 :  sin(t - x)

Linear Integral Equations Question 1 Detailed Solution

Concept:

Let the Volterra integral equation of 2nd kind be

y(x) = f(x) + λ\(\displaystyle \int_0^x K(x,t)y(t) d t\) where K(x,t) is continuous function on 0 ≤ x ≤ a, 0 ≤ t ≤ x

and f(x) is continuous on 0 ≤ x ≤ a.

then iterative kernel is given by

K1(x, t) = K(x, t)

Kn(x, t) = \(\displaystyle \int_t^x K(x,s)K_{n-1}(s, t)ds\)

and Resolvent kernel is

R(x, t; λ) = \(\sum_{n=1}^{\infty}λ^{n-1}K_{n}(x, t)\)

Explanation:

Given K(x, t) = t - x

K1(x, t) = K(x, t) = t - x

K2(x, t) = \(\displaystyle \int_t^x (s-x)(t-s)ds\)

           = \(\displaystyle \int_t^x (st-xt-s^2+xs)ds\)

          = \(\left[{s^2t\over 2}-xts-{s^3\over 3}+{xs^2\over 2}\right]_t^x\)

          = \(\left[{x^2t\over 2}-x^2t-{x^3\over 3}+{x^3\over 2}\right]-\left[{t^3\over 2}-xt^2-{t^3\over 3}+{xt^2\over 2}\right]\)

        = \(\left[-{x^2t\over 2}+{x^3\over 6}\right]-\left[{t^3\over 6}-{xt^2\over 2}\right]\)

       = \(x^3-t^3-3x^2t+3xt^2\over6\)

       = \(-{(t-x)^3\over 3!}\)

Similarly we get

K3(x, t) = \({(t-x)^5\over 5!}\) 

Continuing this process we get

Kn(x, t) = \({(-1)^n(t-x)^{2n+1}\over (2n+1)!}\)

So, Resolvent kernel is

R(x, t; 1) = \(\sum_{n=1}^{\infty}1^{n-1}.{(-1)^n(t-x)^{2n+1}\over (2n+1)!}\) = sin(t - x)

Option (3) is true

Linear Integral Equations Question 2:

The kernel corresponding to the boundary value problem 

y''(x) + λy(x) = x with y(0) = 0 and y'(1) = 0 is

  1. k(x, t) = \(\begin{cases}t, x>t\\x, x
  2. k(x, t) = \(\begin{cases}x, x>t\\t, x
  3. k(x, t) = \(\begin{cases}\frac xt, x>t\\\frac tx, x
  4. k(x, t) = xt

Answer (Detailed Solution Below)

Option 1 : k(x, t) = \(\begin{cases}t, x>t\\x, x

Linear Integral Equations Question 2 Detailed Solution

Explanation:

y''(x) + λy(x) = x with y(0) = 0 and y'(1) = 0

y''(x) = x - λy(x)

Integrating both sides from 0 to x

y'(x) - y'(0) = \(x^2\over 2\) - λ\(\int_0^xy(t)dt\)

y'(x) = c + \(x^2\over 2\) - λ\(\int_0^xy(t)dt\) ....(i) where c = y'(0)

Again integrating from 0 to x 

y(x) - y(0) = cx + \({x^3\over 6}-\lambda\int_0^x\int_0^xy(t)dt\)

y(x) - 0 = cx + \({x^3\over 6}-\lambda\int_0^x(x-t)y(t)dt\)

y(x) = cx + \({x^3\over 6}-\lambda\int_0^x(x-t)y(t)dt\)

Using 

y'(1) = 0 in (1) we get

0 = c + \(\frac12-\lambda\int_0^1y(t)dt\)

c = \(-\frac12+\lambda\int_0^1y(t)dt\)

Hence

y(x) = \(-\frac x2+\lambda\int_0^1xy(t)dt\) + \({x^3\over 6}-\lambda\int_0^x(x-t)y(t)dt\)

y(x) = \(\frac16(x^3-3x)+\lambda[\int_0^xxy(t)dt+\int_x^1 xy(t)dt-\int_0^x(x-t)y(t)dt]\)

y(x) = \(\frac16(x^3-3x)+\lambda[\int_0^xty(t)dt+\int_x^1 xy(t)dt]\)

y(x) = \(\frac16(x^3-3x)+\lambda\int_0^1k(x,t)y(t)dt\)

where k(x, t) = \(\begin{cases}t, x>t\\x, x

Option (1) is true.

Linear Integral Equations Question 3:

Let y(x) be the solution of Fredholm integral equation 

\(y(x)=x+ \displaystyle \int_0^1 x y(t) d t\). Then y(2) is

  1. 4
  2. 1
  3. 3
  4. 2

Answer (Detailed Solution Below)

Option 1 : 4

Linear Integral Equations Question 3 Detailed Solution

Explanation:

\(y(x)=x+ \displaystyle \int_0^1 x y(t) d t\)

⇒ \(y(x)=x+ x\displaystyle \int_0^1 y(t) d t\)

⇒ y(x) = x + xc

⇒ y(x) = (1 + c)x....(i)

where

c = \(\displaystyle \int_0^1 y(t) d t\)

⇒ c = \(\displaystyle \int_0^1 (1+c)t d t\) (by using (i))

⇒ c = \((1+c).\frac12\)

⇒ 2c = 1 + c

⇒ c = 1

Putting in (i) we get

y(x) = 2x

Hence y(2) = 4

Option (1) is true.

Linear Integral Equations Question 4:

Let y be a solution of the Volterra integral equation y(x) = 1 + x + \(\int_0^xe^{x-t}\)y(t)dt. Then which of the following is correct?

  1. y(x) = \(\frac14-\frac x2+\frac{e^x}4\)
  2. y(x) = \(\frac14+\frac x2+\frac{1e^x}4\)
  3. y(x) = \(\frac14+\frac x2+\frac{3e^x}4\)
  4. y(x) = x2 + x

Answer (Detailed Solution Below)

Option 3 : y(x) = \(\frac14+\frac x2+\frac{3e^x}4\)

Linear Integral Equations Question 4 Detailed Solution

Explanation:

y(x) = 1 + x + \(\int_0^xe^{x-t}\)y(t)dt

Here the kernel k(x, t) = ex-t is the function of the difference of x - t only. So the Volterra integral equation can be written as

y(x) = 1 + x + k(x)*y(x)

Taking Laplace transformation we get

Y(s) = \(\frac1s +\frac1{s^2}+\frac1{s-1}Y(s)\) where L{y(x)} = Y(s)

⇒ \((1-\frac1{s-1})Y(s)={s+1\over s^2}\)

⇒ Y(s). \(s-2\over s-1\)\({s+1\over s^2}\)

⇒ Y(s) = \({s+1\over s^2}\) × \(s-1\over s-2\)

⇒ Y(s) = \(s^2-1\over s^2(s-2)\)

Using partial sum

\(s^2-1\over s^2(s-2)\) = \(\frac14.\frac1s+\frac12.\frac1{s^2}+\frac34.\frac1{s-2}\)

Hence taking inverse Laplace transformation we get

y(x) = \(\frac14+\frac x2+\frac{3e^x}4\)

Option (3) is true.

Linear Integral Equations Question 5:

Let an integral equation be x3\(\int_0^x e^{x-t}y(t)dt\). Then the value of y(x) at x = 2 is

  1. -4
  2. -2
  3. 2
  4. 4

Answer (Detailed Solution Below)

Option 4 : 4

Linear Integral Equations Question 5 Detailed Solution

Concept:

Leibnitz rule of differentiation:

Let F(x, t) and \(\partial F\over \partial x\) be continuous function of both x and t and let a'(x), b'(x) be continuous functions then

\({d\over dx}\int_{a(x)}^{b(x)}F(x, t)dt=\int_{a(x)}^{b(x)}{\partial F\over \partial x}dt+F(x, a(x))a'(x)-F(x, b(x))b'(x)\)  

Explanation:

x3\(\int_0^x e^{x-t}y(t)dt\)

Using Leibnitz rule of differentiation we get

3x2\(\int_0^x e^{x-t}y(t)dt \)  + ex - xy(x).1 - 0

⇒ 3x2 = x3 + y(x)

y(x) =  3x - x3  

Hence y(2) = 12 - 8 =  4

Option (1) is true. 

Top Linear Integral Equations MCQ Objective Questions

Let u be the solution of the Volterra integral equation \(\rm \int_0^t\left[\frac{1}{2}+\sin (t-\tau)\right]u(\tau)d\tau=\sin t\)

Then the value of u(1) is

  1. 0
  2. 1
  3. 2
  4. 2e-1

Answer (Detailed Solution Below)

Option 1 : 0

Linear Integral Equations Question 6 Detailed Solution

Download Solution PDF
The Correct answer is (1).

We will update the solution later.

For the unknown y : [0, 1] → ℝ, consider the following two-point boundary value problem:

\(\rm \left\{\begin{aligned}\rm y^{\prime \prime}(x)+2 y(x) & =0 \quad \text { for } \rm x ∈(0,1), \\ \rm y(0) & =\rm y(1)=0 .\end{aligned}\right.\).

It is given that the above boundary value problem corresponds to the following integral equation:

y(x) = 2\(\displaystyle\int_0^1\) K(x, t) y(t) dt for x ∈ [0, 1].

Which of the following is the kernel K(x, t)?

  1. K(x, t) = \(\begin{cases} \rm t(1-x) & \text { for } \rm tx\end{cases}\)
  2. K(x, t) = \(\begin{cases} \rm t^2(1-x) & \text { for } \rm tx\end{cases}\)
  3. K(x, t) = \(\begin{cases}\rm \sqrt{t}(1-x) & \text { for } \rm tx\end{cases}\)
  4. K(x, t) = \(\begin{cases} \rm \sqrt{t^3}(1-x) & \text { for } \rm tx\end{cases}\)

Answer (Detailed Solution Below)

Option 1 : K(x, t) = \(\begin{cases} \rm t(1-x) & \text { for } \rm tx\end{cases}\)

Linear Integral Equations Question 7 Detailed Solution

Download Solution PDF

Concept:

Leibnitz rule for differentiation:

\(\frac{\partial }{\partial x}\int_{a(x)}^{b(x)}f(x,t)dt\) = \(\int_{a(x)}^{b(x)}\frac{\partial f}{\partial x}dt+f(b(x),x)\frac{\partial b}{\partial x}-f(a(x),x)\frac{\partial a}{\partial x}\) 

Explanation:

(1): 

K(x, t) = \(\begin{cases} \rm t(1-x) & \text { for } \rm tx\end{cases}\) 

So 

y(x) = 2\(\displaystyle\int_0^1\) K(x, t) y(t) dt

⇒ y(x) = 2 \(\displaystyle\int_0^x\)t(1 - x)ydt + 2 \(\displaystyle\int_x^1\)x(1 - t)ydt....(i)

⇒ y' = 2\(\displaystyle\int_0^x\)(-t)y(t)dt + x(1 - x)y(x) - 0 + 2\(\displaystyle\int_x^1\)1(1-t)y(t)dt + 0 -x(1 - x)y(x).1

⇒ y' = 2\(\displaystyle\int_0^x\)(-t)y(t)dt + 2\(\displaystyle\int_x^1\)(1 - t)y(t)dt

⇒ y'' = 2[0 - xy(x).1 - 0] + 2[0 + 0 -(1 - x)y(x)] 

⇒ y'' = -2y(x)

⇒ y''(x) + 2y(x) = 0

 Also by (i)

y(0) = \(\displaystyle\int_0^0\)t(1 - 0)ydt + 2 \(\displaystyle\int_0^1\)0(1 - t)ydt = 0 and  

y(1) = \(\displaystyle\int_0^1\)t(1 - 1)ydt + 2 \(\displaystyle\int_1^1\)1(1 - t)ydt = 0

hence \(\rm \left\{\begin{aligned}\rm y^{\prime \prime}(x)+2 y(x) & =0 \quad \text { for } \rm x ∈(0,1), \\ \rm y(0) & =\rm y(1)=0 .\end{aligned}\right.\) satisfies

Therefore option (1) is correct

The solution of the Fredholm integral equation \(y(s)=s+2 \int_0^1\left(s t^2+s^2 t\right) y(t) d t\) is

  1. y(s) = -(50s + 40s2)
  2. y(s) = (30s + 15s2)
  3. y(s) = -(30s + 40s2)
  4. y(s) = (60s + 50s2)

Answer (Detailed Solution Below)

Option 3 : y(s) = -(30s + 40s2)

Linear Integral Equations Question 8 Detailed Solution

Download Solution PDF

Explanation

Given:

y(s) = s + 2 \(∫_0^1 s t^2 y(t) d t+2 ∫_0^1 s^2 t y(t) d t\)

let \(\int_0^1\)t2 y(t) dt = c1    -- (i)

\(\int_0^1\) t y(t) dt = c2    -- (ii)

⇒ y(s) = s + 2sc1 + 2s2 c2 ---- (iii)

By (ii), c2 = \(\int_0^1\)t[t + 2c1 t + 2c2t2]dt

=\(\int_0^1\)(t2 + 2t2 c1 + 2c2 t3)dt

c2​ \(\frac{t^3}{3}\left[1+\frac{2}{c_1}\right]+\left.\frac{c_2 t^4}{2}\right|_0 ^1=\left(\frac{1}{3}+\frac{2}{3} c_1\right)+\frac{c_2}{2}\)

\(⇒ \frac{3 C_2}{2}=1+\frac{2}{C_1} \)

⇒ 4C1 - 3c2 = -2     - (iv)

\(C_1 =∫_0^1 t^2\left[t+2 c_1 t+2 t^2 c_2\right] d t \)

\(=∫_0^1\left[t^3\left(1+2 c_1\right)+2 t^4 c_2\right] d t\)

\(c_1 =\left[\left(1+2 c_1\right) \frac{t^4}{4}+\frac{2 c_2 t^5}{5}\right]_0^1=\frac{1+2 c_1}{4}+\frac{2 c_2}{5}\)

 20c1 = 5 + 10c1 + 8c2

⇒ 10c1 - 8c2 = 5 - (v)

Now solving equation (iv) and (v) to find c1 & c2.

20c1 - 15c2 = - 10 

20c1 - 16c2 = 10

subtracting we get

c2 = - 20

Hence (iv) implies 

 4c1​ + 60 = -2 ⇒ 4c= - 62 ⇒ c= - 31/2 

thus y(s) = s + 2sc1 + 2s2c2

= s + (-31) s + 2s2(-20)

y(s) = s - 31s - 40s2  = -(30s + 40s2)

option (3) is correct

Linear Integral Equations Question 9:

The value of λ for which the integral equation 

\(y(x)=\lambda \displaystyle \int_0^1 x^2 e^{x+t} y(t) d t\)

has a non-zero solution, is

  1. \(\frac{4}{1+e^2}\)
  2. \(\frac{2}{1+e^2}\)
  3. \(\frac{4}{e^2-1}\)
  4. \(\frac{2}{e^2-1}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{4}{e^2-1}\)

Linear Integral Equations Question 9 Detailed Solution

Explanation:

\(y(x)=λ \displaystyle \int_0^1 x^2 e^{x+t} y(t) d t\)

\(y(x)=λ x^2 e^{x}\displaystyle \int_0^1 e^{t} y(t) d t\)

⇒ y(x) = λx2exc....(i)

where c = \(\displaystyle \int_0^1 e^{t} y(t) d t\)....(ii) 

Putting the expression of y(x) from (i) in (ii) we get

c = \(\displaystyle \int_0^1 e^{t} λ t^2e^tc\, d t\)

⇒ c = λc\(\displaystyle \int_0^1 t^2e^{2t}\, d t\)

⇒ c = λc \(\left\{\left[ t^2{e^{2t}\over 2}\right]_0^1-\displaystyle \int_0^12t{e^{2t}\over2}\, dt\right\}\)

⇒ c = λc \(\left\{{e^{2}\over 2}-\left[{t e^{2t}\over 2}\right]_0^1+\left[{e^{2t}\over4}\right]_0^1\right\}\)

⇒ c = λc\(\left\{{e^{2}\over 2}-{e^2\over 2}+{e^{2}-1\over4}\right\}\)

⇒ c = λc\(e^{2}-1\over4\)

⇒ c - λc\(e^{2}-1\over4\) = 0

Since c ≠ 0

⇒ 1 - λ\(e^{2}-1\over4\) = 0

⇒ λ = \(\frac{4}{e^2-1}\)

(3) is correct

Linear Integral Equations Question 10:

Let u be the solution of the Volterra integral equation \(\rm \int_0^t\left[\frac{1}{2}+\sin (t-\tau)\right]u(\tau)d\tau=\sin t\)

Then the value of u(1) is

  1. 0
  2. 1
  3. 2
  4. 2e-1

Answer (Detailed Solution Below)

Option 1 : 0

Linear Integral Equations Question 10 Detailed Solution

The Correct answer is (1).

We will update the solution later.

Linear Integral Equations Question 11:

Using the Method of degenerate Kernels, solve the Integral Equation

\(u(x)-\lambda \int_0^1 \log \left(\frac{1}{t}\right)^p u(t) d t=1\)

then u(x) = ?

  1. \(\frac{1}{1+\lambda \sqrt{p-1}}\)
  2. \(\frac{1}{1+p\lambda}\)
  3. \(\frac{1}{1-p\lambda}\)
  4. \(\frac{1}{p\lambda-1}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{1}{1-p\lambda}\)

Linear Integral Equations Question 11 Detailed Solution

Explanation:

\(u(x)-λ \int_0^1 \log \left(\frac{1}{t}\right)^p u(t) d t=1\)

⇒ \(u(x)=1+λ \int_0^1 \log \left(t^{-p}\right) u(t) d t\)

⇒ u(x) = 1 + λ\(\int_0^1-p \log \left(t^{}\right) u(t) d t\)

⇒ u(x) = 1 - pλc....(i) where

c = \(\int_0^1 \log \left(t^{}\right) u(t) d t\)....(ii)

Putting the expression of u(t) from (i) in (ii) we get

c = \(\int_0^1 \log \left(t^{}\right) (1 - pλc) d t\)

⇒ c = (1 - pλc) \(\int_0^1 \log \left(t^{}\right) d t\)

⇒ c = (1 - pλc) \([t\log t-t]_0^1\)

⇒ c = (1 - pλc) (0 - 1)

⇒ c = -1 + pλc 

⇒ c(pλ - 1) = 1

⇒ c = \(\frac{1}{p\lambda-1}\)

Putting this value of c in (i) we get

u(x) = 1 - \(\frac{p\lambda}{p\lambda-1}\) = \(\frac{1}{1-p\lambda}\)

(3) is correct

Linear Integral Equations Question 12:

Let y be a solution of the Volterra integral equation y(x) = 1 + x + \(\int_0^xe^{x-t}\)y(t)dt. Then which of the following is correct?

  1. y(x) = \(\frac14-\frac x2+\frac{e^x}4\)
  2. y(x) = \(\frac14+\frac x2+\frac{1e^x}4\)
  3. y(x) = \(\frac14+\frac x2+\frac{3e^x}4\)
  4. y(x) = x2 + x

Answer (Detailed Solution Below)

Option 3 : y(x) = \(\frac14+\frac x2+\frac{3e^x}4\)

Linear Integral Equations Question 12 Detailed Solution

Explanation:

y(x) = 1 + x + \(\int_0^xe^{x-t}\)y(t)dt

Here the kernel k(x, t) = ex-t is the function of the difference of x - t only. So the Volterra integral equation can be written as

y(x) = 1 + x + k(x)*y(x)

Taking Laplace transformation we get

Y(s) = \(\frac1s +\frac1{s^2}+\frac1{s-1}Y(s)\) where L{y(x)} = Y(s)

⇒ \((1-\frac1{s-1})Y(s)={s+1\over s^2}\)

⇒ Y(s). \(s-2\over s-1\)\({s+1\over s^2}\)

⇒ Y(s) = \({s+1\over s^2}\) × \(s-1\over s-2\)

⇒ Y(s) = \(s^2-1\over s^2(s-2)\)

Using partial sum

\(s^2-1\over s^2(s-2)\) = \(\frac14.\frac1s+\frac12.\frac1{s^2}+\frac34.\frac1{s-2}\)

Hence taking inverse Laplace transformation we get

y(x) = \(\frac14+\frac x2+\frac{3e^x}4\)

Option (3) is true.

Linear Integral Equations Question 13:

Consider the integral equation \(y(x)=x^{3}+\int_{0}^{x} \operatorname{sin}(x-t) y(t) d t,\) x ∈ [0, π] Then the value of y(1) is

  1. 19/20
  2. 1
  3. 17/20
  4. 21/20

Answer (Detailed Solution Below)

Option 4 : 21/20

Linear Integral Equations Question 13 Detailed Solution

Concept:

(i) Convolution theorem: The convolution  f∗g is defined as
(f∗g)(t) = \(∫_0^tf(u)g(t-u)du\)

(ii) Laplace transformation of f∗g is given by L{f∗g} = F(s)G(s) where L{f} = F(s) and L{g} = G(s) 

Explanation:

\(y(x)=x^{3}+\int_{0}^{x} \operatorname{sin}(x-t) y(t) d t\)

⇒ y(x) = x3 + sin(x)∗y(x)

Laking Laplace transformation we get

⇒ L{y(x)} = L{x3} + L{sin(x)∗y(x)}

⇒ Y(s) = \(\frac6{s^4}\) + \(\frac{1}{s^2+1}\)Y(s) (as \(L\{x^n\}=\frac{n!}{s^{n+1}}\))

⇒ Y(s)(1 - \(\frac{1}{s^2+1}\)) = \(\frac6{s^4}\)

⇒ Y(s)( \(\frac{s^2}{s^2+1}\)) = \(\frac6{s^4}\)

⇒ Y(s) \(\frac{6(s^2+1)}{s^6}\)

⇒ Y(s) \(\frac6{s^4}+\frac6{s^6}\)

Taking inverse Laplace transformation we get

y(x) = \(x^3+\frac6{5!}x^5\) (as \(L^{-1}\{s^{n}\}=\frac{x^n}{(n-1)!}\))

y(x) = \(x^3+\frac{x^5}{20}\) 

Therefore y(1) = \(1+\frac{1}{20}\) = 21/20

(4) is correct

Linear Integral Equations Question 14:

The solution of integral equation \(\rm u(x)=\frac{5 x}{6}+\frac{1}{2} \int_0^1\) xt u(t)dt is

  1. x2
  2. x
  3. \(\frac{5}{2}x\)
  4. x + 2

Answer (Detailed Solution Below)

Option 2 : x

Linear Integral Equations Question 14 Detailed Solution

Explanation:

IE 

\(\rm u(x)=\frac{5 x}{6}+\frac{1}{2} \int_0^1\) xt u(t)dt

u(x) = \(\frac{5 x}{6}+\frac{x}{2}\)c ...(i)

where 

c = \(\int_0^1 tu(t)dt\)

c = \(\int_0^1 (\frac{5t^2}{6}+\frac{ct^2}{2})dt\) (using (i))

c = \(\frac{5}{18}+\frac{c}{6}\)

\(\frac{5c}{6}=\frac{5}{18}\)

c = 1/3

Hence solution is

u(x) = \(\frac{5 x}{6}+\frac{x}{6}\) 

u(x) = x

(2) correct

Linear Integral Equations Question 15:

Let λ1, λ2 be the characteristic numbers and f1, f2 the corresponding eigen functions for the homogeneous integral equation.

\(\phi(x)-\lambda \int_0^1\left(x t+2 x^2\right) \phi(t) d t=0\)

then

  1. \( \lambda=-18 \pm 6 \sqrt{10}\)
  2. \( \lambda=-36 \pm 12 \sqrt{10}\)
  3. \(\int_0^1 f_1(x) f_2(x) d x=1 \)
  4. \(\int_0^1 f_1(x) f_2(x) d x=0\)

Answer (Detailed Solution Below)

Option :

Linear Integral Equations Question 15 Detailed Solution

Explanation:

\(\phi(x)=λ \int_0^1\left(x t+2 x^2\right) \phi(t) dt\)

\(\phi(x)=λ x\int_0^1t \phi(t) dt+2λ x^2\int_0^1 \phi(t)dt\)

\(\phi(t)=λ c_1x+2λ c_2x^2\)...(i)

where 

\(c_1=\int_0^1 t\phi(t)dt\) and \(c_2=\int_0^1 \phi(t)dt\)

so using (i)

\(c_1=\int_0^1 t(λ c_1t+2λ c_2t^2)dt\)

\(c_1=\frac{λ c_1}{3}+\frac{λ c_2}{2}\)

\((1-\frac{λ}{3})c_1-\frac{λ }{2}c_2\) = 0...(ii)

and 

\(c_2=\int_0^1 (λ c_1t+2λ c_2t^2)dt\)

\(c_2=\frac{λ c_1}{2}+\frac{2λ c_2}{3}\)

\(-\frac{λ}{2}c_1+(1-\frac{2λ }{3})c_2\) = 0...(iii)

(ii) and (iii) has solution if

\(\begin{vmatrix}1-\frac{λ}{3}&-\frac{λ}{2}\\-\frac{λ}{2}&1-\frac{2λ}{3}\end{vmatrix}\) = 0

\(1-\frac{λ}{3}-\frac{2λ}{3}+\frac{2λ^2}{9}-\frac{λ^2}{4}\) = 0

\(\frac{λ^2}{36}\) + λ - 1 = 0

λ2 +36λ - 36 = 0

λ = \(\frac{-36\pm\sqrt{1296+144}}{2}\)

λ = \(-18 \pm 6 \sqrt{10}\)

(1) correct

Since f1, f2 the corresponding eigen functions for the homogeneous integral equation so \(\int_0^1 f_1(x) f_2(x) d x=0\)

(4) correct

Get Free Access Now
Hot Links: teen patti master teen patti club teen patti rich teen patti yas