Quadratic Equations MCQ Quiz - Objective Question with Answer for Quadratic Equations - Download Free PDF

Last updated on Jun 19, 2025

Latest Quadratic Equations MCQ Objective Questions

Quadratic Equations Question 1:

Comprehension:

α and β are the roots of quadratic equation x2 x√α + β = 0 . Considering this statement answer the following questions

The quadratic equation having roots α+1 and β+1 is

  1. x2 - x + 2 = 0
  2. x2 - x - 2 = 0
  3. x2 + x + 2 = 0 
  4. x2 + x - 2 = 0

Answer (Detailed Solution Below)

Option 2 : x2 - x - 2 = 0

Quadratic Equations Question 1 Detailed Solution

- bijoux-oeil-de-tigre.com

Calculation:

Given,

From the previous result, the roots of the original equation are

\( \alpha = 1 \) and \( \beta = -2 \)

We seek the quadratic whose roots are

\( \alpha + 1 = 1 + 1 = 2\) and \( \beta + 1 = -2 + 1 = -1 \)

For a quadratic with roots \(r_1\) and \(r_2\), the monic form is:

\( x^2 - (r_1 + r_2)\,x + (r_1\,r_2) = 0. \)

Here,

\( r_1 + r_2 = 2 + (-1) = 1, \)

\( r_1\,r_2 = 2 \times (-1) = -2. \)

Substituting gives:

\( x^2 - 1\cdot x + (-2) = 0 \)

\( \boxed{x^2 - x - 2 = 0} \)

Hence, the correct anwer is Option 2.

Quadratic Equations Question 2:

Comprehension:

α and β are the roots of quadratic equation x2 x√α + β = 0 . Considering this statement answer the following questions

The value of α and β is

  1. α =  1 and β =  -1 
  2. α = 2 and β = -2 
  3. α = 2 and  β = 1
  4. α = 1 and β = -2

Answer (Detailed Solution Below)

Option 4 : α = 1 and β = -2

Quadratic Equations Question 2 Detailed Solution

- bijoux-oeil-de-tigre.com

Calculation:

Given,

α and β are the roots of the quadratic equation

\(x^2 + \sqrt{\alpha}\,x + \beta = 0 \)

By Viète’s relations,

Sum of roots: \( \alpha + \beta = -\sqrt{\alpha} \),

Product of roots: \(\alpha\beta = \beta \)

From \(\alpha\beta = \beta \), either \(\beta = 0 \) or \(\alpha = 1 \).

Since β≠0 in the given options, we take \(\alpha = 1 \).

Substitute into the sum relation:

\(1 + \beta = -\sqrt{1} = -1\)\(\beta = -2 \)

Therefore, \(\alpha = 1 \) and \(\beta = -2 \)

Hence, the correct answer is Option 4. 

Quadratic Equations Question 3:

If k is a root of , then what is equal to?

  1. π/2
  2. 0
  3. π/4
  4. π/2

Answer (Detailed Solution Below)

Option 4 : π/2

Quadratic Equations Question 3 Detailed Solution

Calculation:

We are given that k is a root of 

Solving the quadratic equation:

\(x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(1)}}{2(1)} = \frac{4 \pm \sqrt{16 - 4}}{2} = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} \)

⇒ \(x = 2 \pm \sqrt{3} \)

Thus, the two possible values of k are

⇒ \(k = 2 + \sqrt{3} \quad \text{or} \quad k = 2 - \sqrt{3} \)

We need to find  \(\tan^{-1}(k) + \tan^{-1}\left(\frac{1}{k}\right) \)

Using the identity for the sum of inverse tangents

\(\tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \)

⇒ \(\tan^{-1}(k) + \tan^{-1}\left(\frac{1}{k}\right) = \tan^{-1}\left(\frac{k + \frac{1}{k}}{1 - k \cdot \frac{1}{k}}\right) \)

\(= \tan^{-1}\left(\frac{k + \frac{1}{k}}{1 - 1}\right) = \tan^{-1} \left(\frac{k + \frac{1}{k}}{0}\right) \)

This expression results in an undefined value, but we know from properties of the inverse tangent that

⇒ \(\tan^{-1}(k) + \tan^{-1}\left(\frac{1}{k}\right) = \frac{\pi}{2}\)

Hence, the correct answer is Option 4.

Quadratic Equations Question 4:

 If , then what is \((x-\frac{1}{x})^2+(x-\frac{1}{x})^4+(x-\frac{1}{x})^8\)

  1. 81
  2. 85
  3. 87
  4. 90

Answer (Detailed Solution Below)

Option 3 : 87

Quadratic Equations Question 4 Detailed Solution

Calculation:

Given,

The equation is \( x^2 - x + 1 = 0 \)

We need to find the value of the following expression:

\( \left( x - \frac{1}{x} \right)^2 + \left( x - \frac{1}{x} \right)^4 + \left( x - \frac{1}{x} \right)^8 \)

The equation \( x^2 - x + 1 = 0 \) is solved as follows:

\( x = \frac{1 \pm \sqrt{-3}}{2} = e^{i \pi / 3} \quad \text{or} \quad x = e^{-i \pi / 3} \)

Now, substitute the value of \( x \) into the expression \( x - \frac{1}{x} \):

\( x - \frac{1}{x} = i\sqrt{3} \)

Evaluate the powers of \( x - \frac{1}{x} \)

Now, let's evaluate each term in the expression:

\( \left( x - \frac{1}{x} \right)^2 = (i \sqrt{3})^2 = -3 \)

\( \left( x - \frac{1}{x} \right)^4 = (-3)^2 = 9 \)

\( \left( x - \frac{1}{x} \right)^8 = 9^2 = 81 \)

Now, sum the values:

\( -3 + 9 + 81 = 87 \)

∴ The value of the expression is 87.

Hence, the correct answer is Option 3. 

Quadratic Equations Question 5:

If one root of the equation exceeds the other by \(2\sqrt{3}\) then which one of the following is a value of k?

  1. 3
  2. 6
  3. 9
  4. 12

Answer (Detailed Solution Below)

Option 2 : 6

Quadratic Equations Question 5 Detailed Solution

Given:

The quadratic equation is x2 - kx + k = 0.

One root exceeds the other by 2√3.

⇒ α - β = 2√3.

Also, 

Sum of roots: α + β = k

Product of roots: α × β = k

Calculation:

We know the following identity 

\((\alpha + \beta )^2 = (\alpha - \beta)^2 - 4\alpha\beta \)

⇒ k2 = (2√3)2 - 4k 

⇒ k2 - 12 - 4k = 0

⇒ k2 - 6k + 2k -12 = 0

⇒ k(k - 6) + 2 ( k - 6) = 0

⇒ (k - 6) (k + 2) = 0

⇒ k = 6 and k = -2

Thus, the possible values of k are 6 and -2

Hence, the correct answer is Option 2.

Top Quadratic Equations MCQ Objective Questions

If α and β are the roots of the quadratic equation (5 + √2) x2 - (4 + √5) x + (8 + 2√5) = 0, then the value of 2αβ/ (α + β) is:

  1. 7
  2. 4
  3. 2
  4. 8

Answer (Detailed Solution Below)

Option 2 : 4

Quadratic Equations Question 6 Detailed Solution

Download Solution PDF

Concept Used:

For quadratic equation, ax2 + bx + c = 0,

α + β = -b/a and αβ = c/a

Calculation:

Given equation is (5 + √2) x2 - (4 + √5) x + (8 + 2√5) = 0

On comparing this equation by ax2 + bx + c = 0, we get

a = (5 + √2), b =  - (4 + √5) and c = (8 + 2√5)

Now, αβ = (8 + 2√5)/(5 + √2) and α + β = (4 + √5)/(5 + √2)

Now, We have to find the value of 2αβ/(α + β)

⇒ 2[(8 + 2√5)/(5 + √2)] / [(4 + √5)/(5 + √2)]

⇒ 2 [(8 + 2√5) (4 - √5)] / [(4 + √5)/(4 - √5)]

⇒ 2(32 + 8√5 - 8√5 - 10)/11

⇒ 44/11 = 4

∴ The required value of 2αβ/ (α + β) is 4.

If the roots of equation ax2 + bx + c = 0 are equal and have opposite signs, then which one of the following statements is correct?

  1. a = 0.
  2. b = 0.
  3. c = 0.
  4. None of these.

Answer (Detailed Solution Below)

Option 2 : b = 0.

Quadratic Equations Question 7 Detailed Solution

Download Solution PDF

Concept:

If α and β are the two roots of the quadratic equation Ax2 + Bx + C = 0, then α + β = \(\rm -\dfrac{B}{A}\) and αβ = \(\rm \dfrac{C}{A}\).

 

Calculation:

Let's say that α and β are the two roots of the quadratic equation ax2 + bx + c = 0, then α + β = \(\rm -\dfrac{b}{a}\) and αβ = \(\rm \dfrac{c}{a}\).

It is given that α = -β.

∴ -β + β = \(\rm -\dfrac{b}{a}\)

⇒ \(\rm -\dfrac{b}{a}\) = 0

b = 0.

If α and β are the roots of the equation x2 - q(1 + x) - r = 0, then what is (1 + α)(1 + β) equal to?

  1. 1 - r
  2. q - r
  3. 1 + r
  4. q + r

Answer (Detailed Solution Below)

Option 1 : 1 - r

Quadratic Equations Question 8 Detailed Solution

Download Solution PDF

Concept:

Let us consider the standard form of a quadratic equation, 

ax2 + bx + c =0

Let α and β be the two roots of the above quadratic equation. 

The sum of the roots of a quadratic equation is given by: \({\rm{α }} + {\rm{β }} = - \frac{{\rm{b}}}{{\rm{a}}} = - \frac{{{\rm{coefficient\;of\;x}}}}{{{\rm{coefficient\;of\;}}{{\rm{x}}^2}}}\) 

The product of the roots is given by:

 \({\rm{α β }} = \frac{{\rm{c}}}{{\rm{a}}} = \frac{{{\rm{constant\;term}}}}{{{\rm{coefficient\;of\;}}{{\rm{x}}^2}}}\)

Calculation:

Given:  α and β are the roots of the equation x2 - q(1 + x) - r = 0

⇒ x2 - q - qx - r = 0

⇒ x2 - qx - (q + r) = 0

Sum of roots =  α + β = q

Product of roots = αβ = - (q + r) = -q - r

To find: (1 + α)(1 + β) 

(1 + α)(1 + β) = 1 + α + β + αβ 

= 1 + q - q - r 

= 1 - r

What is the degree of the equation \(\rm\frac {1}{x-3} = \frac {1}{x + 2} - \frac 1 2\)?

  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 3 : 2

Quadratic Equations Question 9 Detailed Solution

Download Solution PDF

Concept:

Degree is the highest power of the variable in a given polynomial

 

Calculation:

Here, 

\(\rm\frac {1}{x-3} = \frac {1}{x + 2} - \frac 1 2\\ \Rightarrow \rm\frac {1}{x-3}= \frac{2-x-2}{2 x+4} \\ \Rightarrow\frac{-x}{2 x+4}=\frac{1}{x-3} \\ \Rightarrow\frac{1}{x-3}+\frac{x}{2 x+4}=0 \\ \Rightarrow\frac{2 x+4+x^{2}-3 x}{(x-3)(2 x+4)}=0 \\ \Rightarrow x^{2}-x+4=0 \)

 

∴Degree = 2

Hence, option (3) is correct. 

If α, β are the roots of the equation x2 + px + q = 0, then the value of α2 + β2

  1. p2 + 2q
  2. p2 - 2q
  3. p(p2 - 3q)
  4. p2 - 4q

Answer (Detailed Solution Below)

Option 2 : p2 - 2q

Quadratic Equations Question 10 Detailed Solution

Download Solution PDF

Concept: 

Let us consider the standard form of a quadratic equation,

ax2 + bx + c =0

Let α and β be the two roots of the above quadratic equation. 

The sum of the roots of a quadratic equation is given by: \({\rm{α }} + {\rm{β }} = - \frac{{\rm{b}}}{{\rm{a}}} = - \frac{{{\rm{coefficient\;of\;x}}}}{{{\rm{coefficient\;of\;}}{{\rm{x}}^2}}}\) 

The product of the roots is given by:  \({\rm{α β }} = \frac{{\rm{c}}}{{\rm{a}}} = \frac{{{\rm{constant\;term}}}}{{{\rm{coefficient\;of\;}}{{\rm{x}}^2}}}\)

Calculation:

Given:

α and β are the roots of the equation x2 + px + q = 0

Sum of roots =  α + β = -p

Product of roots = αβ = q

We know that (a + b)2 = a2 + b2 + 2ab

So, (α + β)2 = α2 + β2 + 2αβ

⇒ (-p)2 = α2 + β2 + 2q

∴ α2 + β2 = p2 - 2q

If x + 4 is a factor of 3x2 + kx + 8 then what is the value of k?

  1. 4
  2. -4
  3. -14
  4. 14

Answer (Detailed Solution Below)

Option 4 : 14

Quadratic Equations Question 11 Detailed Solution

Download Solution PDF

Concept used:

If p(x) be a function and (x - a) be a factor of p(x) then, p(a) = 0

Calculation:

x + 4 is a factor of 3x2 + kx + 8, so x = -4 will be a solution of this equation

⇒ 3(-4)2 + k(-4) + 8 = 0

⇒ 4k = 48 + 8

⇒ k = 14

If the difference between the roots of ax2 + bx + c = 0 is 1, then which one of the following is correct?

  1. b2 = a(a + 4c)
  2. a2 = b(b + 4c)
  3. a2 = c(a + 4c)
  4. b2 = a(b + 4c)

Answer (Detailed Solution Below)

Option 1 : b2 = a(a + 4c)

Quadratic Equations Question 12 Detailed Solution

Download Solution PDF

Concept:

Let us consider the standard form of a quadratic equation, ax2 + bx + c =0

Let α and β be the two roots of the above quadratic equation. 

The sum of the roots of a quadratic equation is given by: \({\rm{α }} + {\rm{β }} = - \frac{{\rm{b}}}{{\rm{a}}} = - \frac{{{\rm{coefficient\;of\;x}}}}{{{\rm{coefficient\;of\;}}{{\rm{x}}^2}}}\) 

The product of the roots is given by:  \({\rm{α β }} = \frac{{\rm{c}}}{{\rm{a}}} = \frac{{{\rm{constant\;term}}}}{{{\rm{coefficient\;of\;}}{{\rm{x}}^2}}}\)

 

Calculation:

Given: difference between the roots of ax2 + bx + c = 0 is 1

Let α and β be the two roots of the above quadratic equation. 

Sum of roots = α + β = \( - \frac{{\rm{b}}}{{\rm{a}}} \)

Product of roots  = α β = \(\frac{{\rm{c}}}{{\rm{a}}}\)

Now, 

α - β = 1

squaring both sides, we get

⇒ (α - β)2 = 12

⇒ (α + β)2 - 4α β = 1

⇒ \(\rm (\frac{-b}{a})^{2} - \frac{4c}{a} = 1\)

⇒ b2 - 4ac = a2

⇒ b2 = a2 + 4ac

∴ b2 = a(a + 4c)

If x2 + kx + k = 0 has repeated roots, then the value of k will satisfy:

  1. k < 0 or k > 4
  2. k = 4 only
  3. k = 4 or k = 0
  4. 0 < k < 4

Answer (Detailed Solution Below)

Option 3 : k = 4 or k = 0

Quadratic Equations Question 13 Detailed Solution

Download Solution PDF

From the given equation, a = 1, b = k, c = k

For repeated roots, b2 – 4ac = 0

⇒ k2 – 4k = 0

⇒ k(k – 4) = 0

∴ k = 4 or k = 0.

Thus, the correct answer is option 3.

If α, β are the roots of the equation 3x2 + 57x - 5 = 0, then what is \(\frac{\alpha ^3+\beta ^3}{\alpha ^{-3}+\ \beta ^{-3}}\) equal to ?

  1. - 27/125
  2. 81/125
  3. 27/125
  4. -125/27

Answer (Detailed Solution Below)

Option 4 : -125/27

Quadratic Equations Question 14 Detailed Solution

Download Solution PDF

Concept:

Consider a quadratic equation: ax2 + bx + c = 0.

Let, α and β are the roots.

  • Sum of roots = α + β = -b/a
  • Product of the roots = α × β = c/a
     

Calculation:

Given quadratic equation:  3x2 + 57x - 5 = 0

Let  α and β are roots, then 

α + β = -57/3,  αβ = -5/3

Now,\(\frac{α ^3+β ^3}{α ^{-3}+β ^{-3}}\)\(\frac{α ^3+β ^3}{\frac {1}{α ^{3}}+\frac{1}{β ^{3}}}\)

\(\frac{α ^3+β ^3}{\frac {(α ^3+β ^3)}{α^3 β^3 }}\)

= (α β)3

= (-5/3)3

= -125/27

Hence, option (4) is correct.

If α and β are roots of the equation x2 + 5|x| - 6 = 0 then the value of |tan-1 α - tan-1 β| is 

  1. \(\dfrac{\pi}{2}\)
  2. 0
  3. π 
  4. \(\dfrac{\pi}{4}\)

Answer (Detailed Solution Below)

Option 1 : \(\dfrac{\pi}{2}\)

Quadratic Equations Question 15 Detailed Solution

Download Solution PDF

Concept:

The modulus value is not negative.

tan-1 (- x) = - tan-1 (x)

 

Calculations:

 Given, equation is  x2 + 5|x| - 6 = 0 

⇒|x2| + 5|x| - 6 = 0 

⇒|x2| + 6|x| - |x| - 6 = 0

⇒|x| (|x|+ 6) - 1 (|x| + 6) = 0

⇒ (|x| + 6) (|x| - 1)= 0

⇒(|x| + 6) = 0  and (|x| - 1) = 0

⇒ |x| = - 6  and |x| = 1

But |x| = - 6  which is not possible because value of modulus is not negative.

⇒ |x| = 1

⇒ x = 1 and x = -1

Given , α and β are toots of the equation x2 + 5|x| - 6 = 0 

Hence, α = 1 and β = -1.

Now, consider, |tan-1 α - tan-1 β| = |tan-1 (1) - tan-1 (- 1)|

⇒ |tan-1 (1) + tan-1 (1)|

 |2 tan-1 (1)|

2.\(\rm \dfrac{\pi}{4}\)

∴ \(\rm \dfrac{\pi}{2}\)

Get Free Access Now
Hot Links: teen patti joy vip real teen patti teen patti bliss teen patti real money app teen patti boss