Trigonometry MCQ Quiz - Objective Question with Answer for Trigonometry - Download Free PDF

Last updated on Apr 26, 2025

Trigonometry is the foundation of geometric mathematics and studies the relations between the angles and sides of a triangle. Trigonometry has very advanced applications hence it is one of the crucial topics in various entrance exams such as Railway Exams, Banking, State CET, etc. Testbook presents some trigonometric questions accompanied by solutions and explanations.Trigonometric objectives come with derived formulas and shortcuts in solving problems. Read this article and solve the questions to test yourself.

Latest Trigonometry MCQ Objective Questions

Trigonometry Question 1:

When seen from a light-house 50 m above sea-level, the angle of depression of a boat is 30°. How far is the boat from the light-house?

  1. 86.6 m
  2. 42 m
  3. 50√3  m
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 4 : More than one of the above

Trigonometry Question 1 Detailed Solution

Given:

When seen from a light-house 50 m above sea-level, the angle of depression of a boat is 30°. 

Concept used:

tanθ = Height ÷ Base

\(\sqrt3 \approx 1.732\)

Trigo

Calculation:

F2 Engineering Mrunal 23.02.2023 D2

Here,

AB = Height of the light-house from the sea level

BC = Distance between the foot of the light-house and the boat

Angle of depression = ∠DAC = 30°

Since, AD is parallel to BC, ∠DAC = 30° = ∠ACB

ΔABC is a right-angled triangle at B.

So,

tan 30° = AB/BC

⇒ \(\frac {1}{\sqrt3}\) = \(\frac {50}{BC}\)

⇒ BC = \(50\sqrt3\)

⇒ BC = 50 × 1.732

⇒ BC ≈ 86.6

∴ The boat is 86.6 m and 50√3 m away from the lighthouse.

Trigonometry Question 2:

A man of height 1.86 m is standing on top of a 13.14-m-high building. He observes a tower and the angles of elevation and depression of the top and bottom of the tower are 30º and 60º, respectively. Find the height of the tower, in m.

  1. 30° 
  2. 20
  3. 27
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 20

Trigonometry Question 2 Detailed Solution

Given:

 A man of height 1.86 m is standing on top of a 13.14-m-high building. He observes a tower and the angles of elevation and depression of the top and bottom of the tower are 30º and 60º, respectively.

Concept used:

1. tan 60° = \({\sqrt3}\)

2. tan 30° = \(\frac{1}{\sqrt3}\)

3. Tangent of an acute angle of a right-angled triangle = \(\frac{Perpendicular}{Base}\)

Calculation:

Let's suppose, AB is the 1.86m tall man standing on a 13.6m long tower, BC. As the man observes another tower DG, the angles of elevation i.e. ∠EAD, and depression i.e. EAG of the top and bottom of the tower, DG are 30º and 60º, respectively.

F1 SSC Savita 10-10-23 D2

So, AB = 1.86, BC = 13.14, ∠EAD = 30º &  ∠EAG = 60º

Since ∠EAG & ∠AGC are alternate angles, ∠EAG = 60º = ∠AGC

AE is drawn parallel to CG.

Hence, AE = CG and AC = EG

Both ΔAED & ΔACG are right-angled triangles at E and C, respectively.

According to the concept,

In ΔACG,

tan ∠AGC \(\frac{AC}{CG}\)

⇒ tan 60º = \(\frac {AB + BC}{CG}\)

⇒ \(\sqrt3 = \frac{1.86 + 13.14}{CG}\)

⇒ CG = \(\frac {15}{\sqrt3}\)

⇒ CG = \(5\sqrt3\)

⇒ AE = \(5\sqrt3\)    ....(1)

Now, in ΔAED,

tan ∠EAD = \(\frac{DE}{AE}\)

⇒ tan 30º = \(\frac {DE}{5\sqrt3}\) (From 1)

⇒ \(\frac{1}{\sqrt3}\) = \(\frac {DE}{5\sqrt3}\)

⇒ DE = 5

Now, the length of DG

⇒ EG + DE

⇒ AC + DE

⇒ AB + BC + DE

⇒ 13.14 + 1.86 + 5

⇒ 20

∴ The height of the tower is 20m.

Trigonometry Question 3:

If tan2 A - 6 tan A + 9 = 0, 0 < A < 90°, what is the value of 6 cot A + 8\(\sqrt{10} \) cos A?

  1. 8\(\sqrt{10}\)
  2. 10\(\sqrt{10}\)
  3. 10
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 10

Trigonometry Question 3 Detailed Solution

Given:

tan2A - 6tanA + 9 = 0

Concept used:

tanθ = P/B

cotθ = 1/tanθ

cosθ = B/H

Here,

P = Perpendicular

B = Base

H = Hypotenuse 

Pythagoras theorem = H2 = P2 + B2

Calculation:

tan2A - 6tanA + 9 = 0

⇒ tan2A - 2 × 3 × tanA + 9 = 0

⇒ (tanA - 3)2 = 0

⇒ (tanA - 3) = 0

⇒ tanA  = 3

So, P/B = 3/1

Now,

H2 = 32 + 12

⇒ H2 = 9 + 1

 H2 = 10

⇒ H = √10

So, cosA = 1/√10

Now,

6 cot A + 8\(√{10} \) cos A = 6 × (1/3) + 8\(√{10} \) × (1/√10)

⇒ 2 + 8

⇒ 10

∴ Required answer is 10.

Shortcut Trick

tan2A - 6tanA + 9 = 0

⇒ (tanA - 3)2 = 0

⇒ (tanA - 3) = 0

⇒ tanA  = 3

⇒ cotA = 1/3

cosA = 1 ÷  \(\sqrt{sec^2A}\)

⇒ 1 ÷\(\sqrt{1 + tan^2A}\)

⇒ 1 ÷\(\sqrt{1 + 9}\) = \(\frac {1}{\sqrt{10}}\)

Now,

6 cot A + \(8\sqrt{10}\) cos A

⇒ 6 × (1/3) + \(8\sqrt{10}\) × \(\frac {1}{\sqrt{10}}\)

⇒ 2 + 8 = 10

∴ The value of 6 cot A + 8\(\sqrt{10} \) cos A is 10.

Trigonometry Question 4:

If cos (x - y) \(=\frac{\sqrt 3}{2}\) and sin (x + y) \(=\frac{1}{2}\), then the value of x (0 ≤ x ≤ 90) is:

  1. 45° 
  2. 30°
  3. 15°
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 30°

Trigonometry Question 4 Detailed Solution

Given:

cos (x - y) = √3/2

sin (x + y) = 1/2

Formula:

cos30° = √3/2

sin30° = 1/2

Calculation:

cos(x - y) = √3/2

⇒ cos(x - y) = cos30°

(x - y) = 30°     ---- (1)

sin(x + y) = 1/2

⇒ sin(x + y) = sin30°

(x + y) = 30    ---- (2)

Add equation (1) and equation (2), we get

2x = 60°

∴ x = 30°

Trigonometry Question 5:

If sec 4A = cosec (3A - 50º), where 4A and 3A are acute angles, find the value of cosec (A + 25º).

  1. 0
  2. 1/√2
  3. 1
  4. √2
  5. 5

Answer (Detailed Solution Below)

Option 4 : √2

Trigonometry Question 5 Detailed Solution

Given:

If sec 4A = cosec (3A - 50°), where 4A and 3A are acute angles, find the value of cosec (A + 25º).

Formula Used:

We know that sec θ = cosec (90° - θ).

Calculation:

Given sec 4A = cosec (3A - 50°)

 ⇒ 4A = 90° - (3A - 50°)

⇒ 4A = 90° - 3A + 50°

⇒ 4A + 3A = 140°

⇒ 7A = 140°

⇒ A = 20°

Now, we need to find A + 25:

⇒ A + 25 = 20° + 25°

⇒ A + 25 = 45°

cosec (A + 25º) = cosec 45° = √2

∴ The correct answer is √2.

Top Trigonometry MCQ Objective Questions

A tree breaks due to storm and the broken part bends, so that the top of the tree touches the ground making an angle of 30° with the ground. The distance between the foot of the tree to the point where the top touches the ground is 18 m. Find the height of the tree (in metres)

  1. 24√3
  2. 9
  3. 9√3
  4. 18√3

Answer (Detailed Solution Below)

Option 4 : 18√3

Trigonometry Question 6 Detailed Solution

Download Solution PDF

GIVEN:

BC = 18 m

CONCEPT:

FORMULAE USED:

Tanθ = Perpendicular/Base

Cosθ = Base/Hypotenuse

CALCULATION:

F1 Abhishek Panday Shraddha 21.08.2020 D7

Height of the tree = AB + AC

Tan 30° = AB/18

⇒ (1/√3) = AB/18

⇒ AB = (18/√3)

Cos 30° = BC/AC = 18/AC

⇒ √3/2 = 18/AC

⇒ AC = 36/√3

Hence, AB + AC = 18/√3 + 36/√3 = 54 / √3

⇒ 54/√3 × √3 /√3  (rationalizing to remove root from denominator)

⇒ 54√3 / 3 = 18√3

∴ Height of the tree = 18√3.

Mistake Point: Here, total height of tree is (AB + AC).

The above Question is previous year Question taken directly from NCERT class 10th. Correct answer will be 18√3

An aeroplane is flying at 1 PM with height of 20 m from a point on the ground. Determine the angle of elevation of aeroplane from other point 20√3 m away from the point exact below of the aero plane on the ground.

  1. 30°
  2. 60°
  3. 90°
  4. 45°

Answer (Detailed Solution Below)

Option 1 : 30°

Trigonometry Question 7 Detailed Solution

Download Solution PDF

We can find the angle of elevation by using the following steps:

Calculation:
F3 Vinanti SSC 14.11.23 D2

Label the height difference between the two points on the ground as "h" and the horizontal distance between the two points as "d".

Use the tangent function to find the angle of elevation:

tan(θ) = \(\frac{h}{d}\).

Solve for the angle of elevation:

\(θ = tan^-1(\frac{h}{d}).\)

In this case, h = 20 m and d = 20√3 m, so:

\(tan(θ) = \frac{20 }{ (20√3)}\)

\(tan(θ) = \frac{1 }{ √3}\)

\(θ = tan^-1(\frac{1}{ √3})\)
θ = 30°

So the angle of elevation is 30°.

If tan 53° = 4/3, then, what is the value of tan8°?

  1. 1/6
  2. 1/8
  3. 1/7
  4. 1/5

Answer (Detailed Solution Below)

Option 3 : 1/7

Trigonometry Question 8 Detailed Solution

Download Solution PDF

Given:

tan 53° = 4/3

Formula Used:

tan(x – y) = (tanx – tany)/(1 + tanxtany)

Calculation:

We know, 8° = 53° - 45°

Tan8° = tan(53° - 45°)

⇒ tan8° = (tan53° - tan45°)/(1 + tan53° tan45°)

⇒ tan8° = (4/3 – 1)/(1 + 4/3 × 1)

⇒ tan8° = (1/3)/(7/3)

⇒ tan8° = 1/7

If sec2θ + tan2θ = 5/3, then what is the value of tan2θ?

  1. 2√3
  2. √3
  3. 1/√3
  4. Cannot be determined

Answer (Detailed Solution Below)

Option 2 : √3

Trigonometry Question 9 Detailed Solution

Download Solution PDF

Concept used: 

sec2(x) = 1 + tan2(x)

Calculation:

⇒ sec2θ + tan2θ = 5/3

⇒ 1 + tan2θ + tan2θ = 5/3

⇒ 2tan2θ = 2/3

⇒ tanθ = 1/√3

⇒ θ = 30

∴ tan(2θ) = tan(60) = √3

If the value of tanθ + cotθ = √3, then find the value of tan6θ + cot6θ.

  1. -2
  2. -1
  3. -3
  4. -4

Answer (Detailed Solution Below)

Option 1 : -2

Trigonometry Question 10 Detailed Solution

Download Solution PDF

Given:

tanθ + cotθ = √3

Formula used:

(a + b)= a3 + b3 + 3ab(a + b)

a2 + b2 = (a + b)2 - 2(a × b)

tanθ × cotθ = 1

Calculation:

tanθ + cotθ = √3

Taking cube on both sides, we get

(tanθ + cotθ)3 = (√3)3

⇒ tan3θ + cot3θ + 3 × tanθ × cotθ × (tanθ + cotθ) = 3√3

⇒ tan3θ + cot3θ + 3√3  = 3√3

⇒ tan3θ + cot3θ = 0  

Taking square on the both sides

(tan3θ + cot3θ)2 = 0

⇒ tan6θ + cot6θ + 2 × tan3θ × cot3θ = 0

⇒ tan6θ + cot6θ + 2 = 0    

⇒ tan6θ + cot6θ = - 2

∴ The value of tan6θ + cot6θ is - 2.

If sec4θ – sec2θ = 3 then the value of tan4θ + tan2θ is:

  1. 8
  2. 4
  3. 6
  4. 3

Answer (Detailed Solution Below)

Option 4 : 3

Trigonometry Question 11 Detailed Solution

Download Solution PDF

As,

⇒ sec2θ = 1 + tan2θ

We have,

⇒ (sec2θ)2 – sec2θ = 3

⇒ (1 + tan2θ)2 – (1 + tan2θ) = 3

⇒ (1 + tan4θ + 2tan2θ) – (1 + tan2θ) = 3

⇒ 1 + tan4θ + 2tan2θ – 1 – tan2θ = 3

⇒ tan4θ + tan2θ = 3

(cos2Ø + 1/cosec2Ø) + 17 = x. What is the value of x2?

  1. 18
  2. 324
  3. 256
  4. 16

Answer (Detailed Solution Below)

Option 2 : 324

Trigonometry Question 12 Detailed Solution

Download Solution PDF

Formula Used:

1/Cosec Ø = Sin Ø 

Sin2Ø + Cos2Ø = 1

Calculation:

Cos2Ø + 1/Cosec2Ø + 17 = x

⇒ Cos2Ø + Sin2Ø + 17 = x

⇒ 1 + 17 = x

⇒ x = 18

⇒ x2 = 324

∴ The value of x2 is 324.

The value of: \(\frac{{\sin 23^\circ \cos 67^\circ + \sec52^\circ \sin38^\circ + \cos 23^\circ \sin 67^\circ + \rm cosec52^\circ \cos 38^\circ }}{{\rm cose{c^2}20^\circ - {{\tan }^2}70^\circ }}\)

  1. 0
  2. 4
  3. 3
  4. 2

Answer (Detailed Solution Below)

Option 3 : 3

Trigonometry Question 13 Detailed Solution

Download Solution PDF

Given:

The given expression = \(\frac{{\sin 23^\circ \cos 67^\circ + \sec52^\circ \sin38^\circ + \cos 23^\circ \sin 67^\circ + \rm cosec52^\circ \cos 38^\circ }}{{\rm cose{c^2}20^\circ - {{\tan }^2}70^\circ }}\)

Formula used:

cos 67° = sin (90° - 67°) = sin 23°

sin 67° = cos (90° - 67°) = cos 23°

sin2 θ + cos2 θ = 1

sec2 θ - tan2 θ = 1

Calculation:

\(\frac{{\sin 23^\circ \cos 67^\circ + \sec52^\circ \sin38^\circ + \cos 23^\circ \sin 67^\circ + \rm cosec52^\circ \cos 38^\circ }}{{\rm cose{c^2}20^\circ - {{\tan }^2}70^\circ }}\)

\(\frac{{\sin 23^\circ \sin 23^\circ +\frac{1}{cos\,52^\circ} \sin38^\circ + cos 23^\circ cos 23^\circ + \frac{1}{sin\,52^\circ} \cos 38^\circ }}{sec^2\,70^\circ-tan^2\,70^\circ}\)

\(\frac{sin^2\,23^\circ+\frac{sin\,38^\circ}{sin\,38^\circ}+cos^2\,23^\circ+\frac{cos\,38^\circ}{cos\,38^\circ}}{1}\)

= sin2 23° + 1 + cos2 23° + 1

= 1 + 1 + 1

= 3

∴ The value of the given expression is 3

If cot4θ + cot2θ = 3, then cosec4θ – cosec2θ = ?

  1. 2
  2. 0
  3. 1
  4. 3

Answer (Detailed Solution Below)

Option 4 : 3

Trigonometry Question 14 Detailed Solution

Download Solution PDF

Calculation:

cot4θ + cot2θ = 3

⇒ cos4θ/sin4θ + cos 2θ/sin 2θ 

cos 2θ(cos 2θ+ sin 2θ )/sin4θ = 3 (Taking LCM)

cos 2θ/sin4θ = 3

⇒ cot2θ . cosec2θ = 3

Now, cosec4θ – cosec2θ

⇒ cosec2θ(cosec2θ – 1)

⇒ cosec2θcot2θ = 3

∴ cosec4θ – cosec2θ = 3

If sec θ - cos θ = 14 and 14 sec θ = x, then the value of x is _________.

  1. tan2 θ
  2. sec2 θ
  3. 2sec θ
  4. 2tan θ

Answer (Detailed Solution Below)

Option 1 : tan2 θ

Trigonometry Question 15 Detailed Solution

Download Solution PDF

Given:

secθ - cosθ = 14 and 14 secθ = x

Concept used:

\(Sec\theta =\frac{1}{Cos\theta}\)

Calculations:

According to the question,

⇒ \(sec\theta - cos\theta= 14\)

 \(\sec\theta-\frac{1}{sec\theta}=14\)

 \( sec²\theta-1=14sec\theta\)

 \(\tan^2\theta=14sec\theta\)      ----(\(sec²\theta-1=tan^2\theta\))

\(\ tan²\theta=x\)

∴ The value of x is \(tan²\theta\).

Get Free Access Now
Hot Links: teen patti master 2025 teen patti real cash withdrawal teen patti dhani