Parallel RC Circuit MCQ Quiz in मल्याळम - Objective Question with Answer for Parallel RC Circuit - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 6, 2025

നേടുക Parallel RC Circuit ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Parallel RC Circuit MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Parallel RC Circuit MCQ Objective Questions

Top Parallel RC Circuit MCQ Objective Questions

Parallel RC Circuit Question 1:

The circuit shown in the figure is used to charge capacitor C alternately   from the current sources as indicated. The switches \({S_1}\) and \({S_2}\) are mechanically coupled and connected as follows?

For \(2nT \le t \le \left( {2n + 1} \right)T\left( {n = 0,1,2 \ldots } \right){S_1}\)to \({P_1}\) and \({S_2}\) to \({P_2}\)

For \(\left( {2n + 1} \right)T \le t \le \left( {2n + 2} \right)T\left( {n = 0,1,2 \ldots } \right){S_1}\)to \({Q_1}\) and \({S_2}\) to \({Q_2}\)

GATE Networks Mobile content Images-Q28

Assume that the capacitor has 0 initial charge. Given that \(u(t)\) is a unit step function, the voltage, \({V_c}\left( t \right)\) across the capacitor is given by

  1. \(\mathop \sum \limits_{n = 1}^\infty {\left( { - 1} \right)^n}tu\left( {t - nT} \right)\)
  2. \(u\left( t \right) + 2\mathop \sum \limits_{n = 1}^\infty {\left( { - 1} \right)^n}u\left( {t - nT} \right)\)
  3. \(tu\left( t \right) + 2\mathop \sum \limits_{n = 1}^\infty {\left( { - 1} \right)^n}u\left( {t - nT} \right)\left( {t - nT} \right)\)
  4. \(\mathop \sum \limits_{n = 1}^\infty [0.5 - {e^{ - \left( {t - 2nT} \right)}} + 0.5{e^{ - \left( {t - 2nT} \right)}} - T]\)

Answer (Detailed Solution Below)

Option 3 : \(tu\left( t \right) + 2\mathop \sum \limits_{n = 1}^\infty {\left( { - 1} \right)^n}u\left( {t - nT} \right)\left( {t - nT} \right)\)

Parallel RC Circuit Question 1 Detailed Solution

\({V_c} = \frac{1}{c}\mathop \smallint \limits_0^t idt\)

\(C = 1F\)

Then \({V_c} = \mathop \smallint \limits_0^t i\left( t \right)dt\)

Since \(2nT\) to \((2n+1)T\) switch S1 is connected to \({P_1}\) & \({S_2}\) is connected \({P_2}\) therefore capacitor will charge in this period by 1A current source.

Therefore for \(0 < t < T\) →

\({V_c} = \mathop \smallint \limits_0^t 1.dt = t\)

Now,

For \(T < t < 2T\)

\(\begin{array}{l} {V_c} = T - \mathop \smallint \limits_T^t dt = 2T - t\\ \therefore At\ t = T\\ {V_c} = T\\ \&\ At\ t = 2T\\ {V_c} = 2T \end{array}\)

Similarly,

For \(2T < t < 3T\)

\({V_1}\left( t \right) = \mathop \smallint \limits_4^t dt = t - 2T\)

Now, \(at\ t = 3T,{\ V_c} = T\)

\(at\ t = 2T{\ V_c} = 0\)

∴only option (3)  satisfies the above values.

Parallel RC Circuit Question 2:

In the figure shown below, assume that all the capacitors are initially uncharged. If \({V_i}\left( t \right) = 10u\left( t \right)\) voltages, \({V_0}\left( t \right)\) is given by?

Untitled1234

  1. \(\rm 8{e^{ - \frac{t}{{0.004}}}}\ volts\)
  2. \(\rm 8\left( {1 - {e^{ - \frac{t}{{0.004}}}}} \right)\ volts\)
  3. \(\rm 8u\left( t \right)\ volts\)
  4. \(\rm 8\ volts\)

Answer (Detailed Solution Below)

Option 3 : \(\rm 8u\left( t \right)\ volts\)

Parallel RC Circuit Question 2 Detailed Solution

Since \(\rm {V_1}\left( t \right) = 10u\left( t \right)\)     i.e. valid for \(\rm t > 0\)

Since R1C1=R2C2 the circuit acts as pure resistive circuit as shown in below figure,

toperrr1

Therefore by voltage division output voltage, Vo = 8 u(t) V

Get Free Access Now
Hot Links: teen patti master app teen patti cash game teen patti sweet