Question
Download Solution PDFश्रृंखला 5 + 55 + 555 + ..... से n पदों तक का योग ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
माना कि a ज्यामितीय श्रेणी का पहला पद और r सार्व अनुपात है। तो एक ज्यामितीय श्रेणी के सामान्य पद को निम्न द्वारा ज्ञात किया गया है: \({a_n} = a{r^{n\; - \;1}}\)
एक ज्यामितीय श्रेणी के n पदों का योग निम्न द्वारा ज्ञात किया गया हैं जिसमें पहला पद ‘a’ और सार्व अनुपात ‘r’ है: \({S_n} = a\;\left( {\frac{{1 - {r^n}}}{{1 - r}}} \right) for |r| < 1\ and\ {S_n} = a\;\left( {\frac{{{r^n} - 1}}{{r - 1}}} \right) for |r| > 1\)
गणना:
यहाँ, हमें श्रृंखला 5 + 55 + 555 + ..... से n पदों तक का योग ज्ञात करना है।
अर्थात् 5 + 55 + 555 + ...... से n पद
= 5 ⋅ [1 + 11 + 111 + ..... से n पद
= \(\frac{5}{9} \cdot [9 + 99 + 999 + .... to\ n\ terms]\)
= \(\frac{5}{9} \cdot [(10 - 1) + (10^2 - 1) + (10^3 - 1) + .... to\ n\ terms]\)
= \(\frac{5}{9} \cdot [(10 + 10^2 + 10^3 + .....to\ n\ terms) - n]\)
चूँकि हम जानते हैं कि, \({S_n} = a\;\left( {\frac{{1 - {r^n}}}{{1 - r}}} \right) for |r| < 1\ and\ {S_n} = a\;\left( {\frac{{{r^n} - 1}}{{r - 1}}} \right) for |r| > 1\)
= \(\frac{5}{9} \cdot [{\frac{10 \times (10^n - 1)}{(10 - 1)} - n}]\)
= \(\frac{5}{81} \cdot (10^{n + 1} - 9n - 10)\)
अतः आवश्यक योग \(\frac{5}{81} \cdot (10^{n + 1} - 9n - 10)\) है।
Last updated on Jul 7, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.