Continuity & Differentiability MCQ Quiz - Objective Question with Answer for Continuity & Differentiability - Download Free PDF

Last updated on May 12, 2025

Latest Continuity & Differentiability MCQ Objective Questions

Continuity & Differentiability Question 1:

Let [x] denote the greatest integer function. Then match List-I with List-II :

List - I

List - II

(A)

|x – 1| + |x – 2|

(I)

is differentiable everywhere except at x = 0

(B)

x – |x| 

(II)

is continuous everywhere

(C)

x – [x]

(III)

is not differentiable at x = 1 

(D)

x |x| 

(IV)

is differentiable at x = 1


Choose the correct answer from the options given below :

  1. (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
  2. (A) - (I), (B) - (III), (C) - (II), (D) - (IV)
  3. (A) - (II), (B) - (I), (C) - (III), (D) - (IV)
  4. (A) - (II), (B) - (IV), (C) - (III), (D) - (I) 

Answer (Detailed Solution Below)

Option 3 : (A) - (II), (B) - (I), (C) - (III), (D) - (IV)

Continuity & Differentiability Question 1 Detailed Solution

Concept:

Greatest Integer Function:

  • The greatest integer function, denoted by [x], returns the largest integer less than or equal to x.
  • The function is also known as the floor function. Mathematically, [x] is defined as the greatest integer less than or equal to x.
  • The greatest integer function is continuous everywhere except at integer points, where it is not differentiable.
  • For differentiability, the function must have no "sharp corners" at the points of discontinuity.

 

Calculation:

Let's analyze each function in the options to match with the correct descriptions.

  • (B)  x − |x|: This is a combination of absolute value functions. These are continuous and differentiable everywhere except at the points where the absolute values change, which are x = 1 and x = 2. Therefore, this function is differentiable everywhere except at x = 0.
  • (A) |x – 1| + |x – 2| : This function involves the absolute value function. The greatest integer function has a discontinuity at integer points, and this function involves absolute values, which means it is continuous everywhere but not differentiable at x = 0. Hence, it is continuous everywhere.
  • (C) x − [x]: This function involves the greatest integer function (floor function), which is continuous but not differentiable at integer points. Therefore, this function is not differentiable at x = 1 because there is a discontinuity at integer points.
  • (D) |x|: This function is continuous and differentiable at all points, including x = 0. Therefore, it is differentiable at x = 1.

 

∴ Correct Matching: (A) - (II), (B) - (I), (C) - (III), (D) - (IV)

Continuity & Differentiability Question 2:

Number of points of discontinuity for \( f(x) = \text{sgn}(\sin x) \), \( x \in [0, 4\pi] \) is

Answer (Detailed Solution Below) 5

Continuity & Differentiability Question 2 Detailed Solution

\(\text{Solution:} \quad f(x) = \text{sgn}(\sin x) \text{ is continuous when } \sin x = 0.\)
\(\Rightarrow x = 0, \pi, 2\pi, 3\pi, 4\pi \\ \)
Hence, the correct answer is 5 

Continuity & Differentiability Question 3:

Let xn =2 \(n^{\frac{1}{n}}\) and yn = \(e^{1-x_n}\), n ∈ ℕ. Then the value of \(\lim _{n \rightarrow \infty}\) yn is ________.

Answer (Detailed Solution Below) 0.35 - 0.37

Continuity & Differentiability Question 3 Detailed Solution

Explanation:  

Let xn = \(2n^{\frac{1}{n}}\) 

and   \(\lim _{n \rightarrow \infty} x_n = 2\) 

yn = \(e^{1-x_n}\) 

\(y_n = e^{1- 2n ^{1/n}} \)  

\(\lim _{n \rightarrow \infty} y_n = \lim _{n \rightarrow \infty} e^{1 -2 n^{1/n}} \)   = \(e^{1 - 2} = e^{-1} = 0.36\)   

Hence 0.36 is the Answer.

Continuity & Differentiability Question 4:

Let a, b ∈ ℝ and a < b. Which of the following statement(s) is/are true?

  1. There exists a continuous function f : [a, b] → (a, b) such that f is one-one
  2. There exists a continuous function f : [a, b] → (a, b) such that f is onto
  3. There exists a continuous function f : (a, b) → [a, b] such that f is one-one 
  4. There exists a continuous function f : (a, b) → [a, b] such that f is onto

Answer (Detailed Solution Below)

Option :

Continuity & Differentiability Question 4 Detailed Solution

Explanation:

Since Under continuous map image of compact set is compact 

⇒ f: [a , b] → (a, b) cam not be onto 

But By plotting the Graph , 

Option(1) , Option(3) and Option(4) are possible 

Continuity & Differentiability Question 5:

Let a, b, c ∈ ℝ such that a < b < c. Which of the following is/are true for any continuous function f : ℝ → ℝ satisfying f(a) = b, f(b) = c and f(c) = a?

  1. There exists α ∈ (a, c) such that f(α) = α
  2. There exists β ∈ (a, b) such that f(β) = β
  3. There exists γ ∈ (a, b) such that (f ◦ f)(γ) = γ
  4. There exists δ ∈ (a, c) such that (f ◦ f ◦ f)(δ) = δ

Answer (Detailed Solution Below)

Option :

Continuity & Differentiability Question 5 Detailed Solution

Explanation: 

By Plotting the Graph, We can observe that only Option(1) , Option(3) and Option(4) satisfies the conditions 

Top Continuity & Differentiability MCQ Objective Questions

Let S be a dense subset of R and f : ℝ → ℝ a given function. Define g : S → ℝ by g(x) = f(x). Which of the following statements is necessarily true? 

  1. If f is continuous on the set S, then f is continuous on the set ℝ\ S
  2. If g is continuous, then f is continuous on the set S 
  3. If g is identically 0 and f is continuous on the set ℝ \ S, then f is identically 0 
  4. If g is identically 0 and f is continuous on the set S, then f is identically 0 

Answer (Detailed Solution Below)

Option 3 : If g is identically 0 and f is continuous on the set ℝ \ S, then f is identically 0 

Continuity & Differentiability Question 6 Detailed Solution

Download Solution PDF

Concept:

If a function is continuous on a dense set \( S \), it doesn't necessarily imply that the function is

continuous on all of \(\mathbb{R}\) , especially on \( R \setminus S \), the complement of \( S\)  in \(\mathbb{R} \) .

Explanation:

Option 1: Continuity on a dense subset \(S\) does not imply continuity on the whole set \(R\).

A function can be continuous on a dense subset but exhibit discontinuities on \(R \setminus S \).

Therefore, this option is incorrect.

Option 2: \(g\) is defined only on \(S\), so even if \(g\) is continuous on \(S\), it says nothing about \( f \)'s

continuity on the rest of \(​​R\). Continuity of \(g\) does not guarantee the continuity of \( f \) everywhere.

Hence, this option is incorrect.

Option 3:  If \(g(x) = f(x) = 0\) for all \(x \in S \) (which is dense in \(R\)), and \( f \) is continuous on \( R \setminus S \),

by the density of \(S\), \( f \) must be 0 everywhere on \(R\), because a continuous function on a dense set that is

0 must be 0 on the entire set. Therefore, this option is correct.

Option 4: \(g\) being identically 0 on \(S \) and \( f \) being continuous on \( S \)) does not imply \( f \) is identically 0

on \( R \setminus S \). Continuity on \(S\) does not extend to the whole set without further conditions.

Therefore, this option is incorrect.

The correct answer is Option 3).

Which one of the following functions is uniformly continuous on the interval (0, 1)?

  1. f(x) = sin\(\rm\frac{1}{x}\)
  2. f(x) = e−1/x2
  3. f(x) = excos\(\rm\frac{1}{x}\)
  4. f(x) = cos x cos\(\rm\frac{\pi}{x}\)

Answer (Detailed Solution Below)

Option 2 : f(x) = e−1/x2

Continuity & Differentiability Question 7 Detailed Solution

Download Solution PDF

Concept:

A function y = f(x) is uniformly continuous at an open interval (a, b) if f(x) is continuous on (a, b) and limit exist at end pints a, b.

Explanation:

(1): f(x) = sin\(\rm\frac{1}{x}\)

\(\lim_{x\to0}\sin\frac1x\) does not exist so f(x) = sin\(\rm\frac{1}{x}\) is not uniformly continuous on (0, 1)

Option (1) is false

(3): f(x) = ex cos\(\rm\frac{1}{x}\)

\(\lim_{x\to0}\)ex cos\(\rm\frac{1}{x}\) does not exist so f(x) = ex cos\(\rm\frac{1}{x}\) is not uniformly continuous on (0, 1)

Option (3) is false

(4): f(x) = cos x cos\(\rm\frac{\pi}{x}\)

\(\lim_{x\to0}\)cos x cos\(\rm\frac{\pi}{x}\) does not exist as \(\lim_{x\to0}\)cos\(\rm\frac{\pi}{x}\) does not exist so f(x) = cos x cos\(\rm\frac{\pi}{x}\)  is not uniformly continuous on (0, 1)

Option (4) is false

(2): f(x) = e−1/x2

(Here f(x) is continuous in (0, 1) and limit exist at x = 0 and x = 1

so f(x) = e−1/xis uniformly continuous on (0, 1)

Option (2) is correct

Continuity & Differentiability Question 8:

Let \(f, g : \mathbb{R} \rightarrow \mathbb{R}\) be given by

and f(x) = x2 and g(x) = sin x

Which of the following functions is uniformly continuous on \(\mathbb{R}\)?

  1. h(x) = g(f(x))
  2. h(x) = g(x)f(x)
  3. h(x) = f(g(x))
  4. h(x) = f(x) + g(x)

Answer (Detailed Solution Below)

Option 3 : h(x) = f(g(x))

Continuity & Differentiability Question 8 Detailed Solution

Explanation:

Recall: x2 is not uniformly continuous function on ℝ. but sin x is uniformly continuous on ℝ.

(1) h(x) = g(f(x)) = sin(x2)

Recall: For f ∶ ℝ → ℝ, of ∃ sequence {an} & {bn} s.t. |an − bn| → 0 but |f(an) − f(bn)| → 0 then f is not uniformly continuous.

Take an = \(\rm\sqrt{2 n \pi + \frac{\pi}{2}}\) and bn = \(\rm\sqrt{2 n \pi − \frac{\pi}{2}}\)

then \(\rm\displaystyle\lim_{n → ∞}\) an − bn = \(\rm\displaystyle\lim_{n → ∞}\) \(\rm\sqrt{2 n \pi + \frac{\pi}{2}} − \sqrt{2 n \pi − \frac{\pi}{2}}\) = 0

But sin(2nπ + \(\frac{\pi}{2}\)) − sin(2nπ − \(\frac{\pi}{2}\)) = 2 → as n → ∞

∴ h(x) is not uniformly continuous.

option (1) is false.

(2) h(x) = g(x) f(x) = sin x ⋅ x2

Recall: f is uniformly continuous on a set x if for given ε > 0, ∃ δ > 0 s.t. |f(x) − f(y)| < ε, whenever |x − y| < δ, x, y ∈ x.

Suppose h(x) is uniformly continuous.

Then, for ε = 1 > 0 ∃ δ > 0 s.t. |h(x) − h(y)| < 1, when |x − y| < δ

Take x ∈ ℝ and y = x + δ/2 then |x − y| = |x − x − δ/2| < δ and |f(x) − f(y)| = |x2 sin x − (x + δ/2)2 sin(x + δ/2)|

≤ |x2 − (x + \(\frac{\delta}{2}\))2| = |x2 − x2 − \(\frac{\delta^2}{2}\) − δx| < 1

⇒ \(\rm\left| − \delta x − \frac{\delta^2}{4}\right|\) < 1 ⇒ δx + \(\frac{\delta^2}{4}\) < 1.

⇒ x < \(\frac{1 − \frac{\delta^2}{4}}{\delta}\) but we have taken x ∈ ℝ.

which is a contradiction.

∴ h(x) is not uniformly continuous. option (2) is false.

(3) h(x) = (sin x)2

Recall: If |f'(x)| ≤ K then f is uniformly continuous

here, h'(x) = 2 sin x cos x = sin 2x

then |sin 2x| < 1 ⇒ h(x) is uniformly continuous.

option (3) is true

(4) h(x) = x2 + sin x

Recall: If f + g is U.C. then f(x) ± g(x) is also U.C.

Now, let us supose h(x) is U.C. on ℝ.

Take, f1(x) = sin x and sin x is U.C. on ℝ.

then h(x) ± f1(x) is U.C. on ℝ.

⇒ x2 + sin x − sin x = x2 is U.C. on ℝ.

which is a contradiction as x2 is not U.C. on ℝ.

option (4) is false.

Continuity & Differentiability Question 9:

If \(\lim_{x\to0}\frac{x(1-\cos x)-ax\sin x}{x^4}\) exist and finite then the value of a is

  1. 0
  2. 1
  3. 2
  4. any value

Answer (Detailed Solution Below)

Option 1 : 0

Continuity & Differentiability Question 9 Detailed Solution

Concept:

L’Hospital’s Rule: If \(\lim_{x\to c}f(x)\) = \(\lim_{x\to c}g(x)\) = 0 or ± ∞ and g'(x) ≠ 0 for all x in I with x ≠ c and \(\lim_{x\to c}\frac{f'(x)}{g'(x)}\) exist then \(\lim_{x\to c}\frac{f(x)}{g(x)}\) = \(\lim_{x\to c}\frac{f'(x)}{g'(x)}\)

Explanation:

\(\lim_{x\to0}\frac{x(1-\cos x)-ax\sin x}{x^4}\) (0/0 form so using L'hospital rule)

\(\lim_{x\to0}\frac{x sin x + 1 - cosx - ax cos x - asinx }{4x^3}\) 

\(\lim_{x\to0}\frac{1 + (x-a) sin x - (ax + 1) cos x}{4x^3}\)

Again using L'hospital rule

\(\lim_{x\to0}\frac{(x-a) cos x + sin x + (ax + 1) sin x - acos x}{12x^2}\)

\(\lim_{x\to0}\frac{(x-2a) cos x + (ax + 2) sin x }{12x^2}\)

It will be 0/0 form if

x - 2a = 0

⇒ a = 0

Option (1) is correct

Continuity & Differentiability Question 10:

A function f defined such that for all real x, y 

(i) f(x + y) = f(x).f(y)

(ii) f(x) = 1 + x g(x)

where \(\lim _{x \rightarrow 0} g(x) = 1\) what is \(\frac{df(x)}{dx}\) equal to ?

  1. g(x)
  2. f(x)
  3. g'(x)
  4. g(x) + xg'(x)

Answer (Detailed Solution Below)

Option 2 : f(x)

Continuity & Differentiability Question 10 Detailed Solution

Explanation:

Here, it is given that

(i) f(x + y) = f(x).f(y) and

(ii) f(x) = 1 + x g(x), where \(\lim _{x \rightarrow 0} g(x) = 1\)

Now, writing for y in the given condition. We have

f(x + h) = f(x).f(h)

Then, f(x + h) - f(x) = f(x)f(h) - f(x)

Or \(\frac{f(x+h)-f(x)}{h}= \frac{f(x)[f(h) - 1]}{h}\)

                      = \( \frac{f(x)h. g(h)}{h}=f(x). g(h)\) (using (ii))

Hence, \(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} f(x) \cdot g(h)=f(x) \cdot 1\)

Since, by hypothesis \(\lim_{h \rightarrow 0} g(h) = 1\)

It follows that f'(x) = f(x)

Since, f(x) exists, f'(x) also exists

and f'(x) = f(x) 

⇒ \(\frac{d}{dx} f(x) = f(x)\)

(2) is true.

Continuity & Differentiability Question 11:

The value of \(\lim_{n \to \infty } n sin (2 \pi e n!)\) is  

  1. 1
  2. π

  3. 2 π 
  4. Does not exist.

Answer (Detailed Solution Below)

Option 3 : 2 π 

Continuity & Differentiability Question 11 Detailed Solution

Explanation -

Let an = n sin(2 π en!) we have 

\(e = \sum_{k=0}^n \frac{1}{k!} + \sum_{k=n+1}^{\infty} \frac{1}{k!} \)

⇒ \(2 \pi e n! = 2\pi r + 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} )\)

Where r is positive integer. so we have

\(lim_{ n \to \infty } n sin( 2\pi r + 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} ))\)

\(lim_{ n \to \infty } n \ sin( 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} ))\)

Further, observe that 

\(\frac{1}{n+1} < ​​n! ( \sum_{k=n+1}^{\infty}\frac{1}{k!}) = \frac{1}{n+1}+ \frac{1}{(n+1)(n+2)}+..... < \frac{1}{n}+ \frac{1}{n^2} + ... = \frac{1}{n-1}\)

By squeeze principle, we have 

\(lim_{n \to \infty }​​n! ( \sum_{k=n+1}^{\infty}\frac{1}{k!}) = lim_{n \to \infty } b_n = 0\) and \(lim_{n \to \infty }n b_n = 1\)

So using the result that \(lim_{x \to 0 } \frac{sinx}{x} = 1\) we get 

\(lim_{n \to \infty } a_n = ​​lim_{n \to \infty } n sin(2 \pi b_n) = ​​lim_{n \to \infty }2 \pi b_n n \frac{sin(2 \pi b_n)}{2 \pi b_n} = 2\pi\)

Hence Option(3) is correct.

Continuity & Differentiability Question 12:

Which of the following function is not differentiable at x = 0?

  1. f(x) = sin( |x|x )
  2. \(f(x) =\begin{cases} sin(x^2) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)
  3. \(f(x) =\begin{cases} sin(|x|) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)
  4. f(x) = [x] sin2(πx) where [.] is greatest integer function

Answer (Detailed Solution Below)

Option 3 : \(f(x) =\begin{cases} sin(|x|) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)

Continuity & Differentiability Question 12 Detailed Solution

Concept -

(i) Differentiability -

Let f(x) be a real-valued function defined on an interval [a,b], i.e. f : [a,b] → \(\mathbb{R}\), let a < c < b

If left-hand derivative of f(x) at c is equal to right-hand derivative of f(x) at c then f(x) is differentiable at c. where LHD = \(lim_{x → c^-} \frac{f(x) -f(c)}{x-c} \) and RHD = \(lim_{x → c^+} \frac{f(x) -f(c)}{x-c} \)

(ii) \(sin(x) = x - \frac{x^3}{3!}+ \frac{x^5}{5!}+....\)

(iii) \( lim_{x → 0} \frac{sin x^2}{x} = lim_{x → 0} \frac{x^2-\frac{x^6}{3!}+...}{x}=0\)  

Explanation -

For option (1) -

We have f(x) = sin( |x|x )

Now use the definition of differentiability - 

\(lim_{x → 0} \frac{f(x) -f(0)}{x-0} =\begin{cases} lim_{x → 0} \frac{-sin x^2}{x} & x< 0 \\ lim_{x → 0} \frac{sin x^2}{x} &x>0 \\ 0 & x = 0 \end{cases}\)

⇒ \(lim_{x → 0} \frac{f(x) -f(0)}{x-0} = 0\) as \( lim_{x → 0} \frac{sin x^2}{x} = lim_{x → 0} \frac{x^2-\frac{x^6}{3!}+...}{x}=0\)

Hence the function is differentiable at x = 0. So option (1) is true.

For option (2) -

We have \(f(x) =\begin{cases} sin(x^2) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)

Now use the definition of differentiability - 

\(lim_{x → 0} \frac{f(x) -f(0)}{x-0} =\begin{cases} lim_{x → 0} \frac{sin x^2}{x} & x \in \mathbb{Q} \\ 0 & otherwise \end{cases}\)

⇒ \(lim_{x → 0} \frac{f(x) -f(0)}{x-0} = 0\) as \( lim_{x → 0} \frac{sin x^2}{x} = lim_{x → 0} \frac{x^2-\frac{x^6}{3!}+...}{x}=0\)

Hence the function is differentiable at x = 0. So option (2) is true.

For option (3) -

We have \(f(x) =\begin{cases} sin(|x|) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)

Now use the definition of differentiability - 

\(lim_{x → 0} \frac{f(x) -f(0)}{x-0} =\begin{cases} lim_{x → 0} \frac{-sin x}{x} & x \in \mathbb{Q}, x< 0 \\ lim_{x → 0} \frac{sin x}{x} & x \in \mathbb{Q},x>0 \\ 0 & otherwise \end{cases}\)

⇒ \(lim_{x → 0^-} \frac{f(x) -f(0)}{x-0} = -1 \) and \(lim_{x → 0^+} \frac{f(x) -f(0)}{x-0} = 1 \) as \( lim_{x → 0} \frac{sin x}{x} = lim_{x → 0} \frac{x-\frac{x^3}{3!}+...}{x}=1\)

Hence the function is not differentiable at x = 0. So option (3) is false.

For option (4) -

We have f(x) = [x] sin2(πx) = \(\begin{cases} -sin^2 \pi x & 1 \le x < 0 \\ 0 & 0\leq x\leq 1 \\ \end{cases}\)

Now use the definition of differentiability - 

⇒ \(LHD =lim_{x → 0^-} \frac{f(x) -f(0)}{x-0} = lim_{x → 0^-} \frac{-sin^2 \pi x}{x} = 0\) and \(RHD =lim_{x → 0^+} \frac{f(x) -f(0)}{x-0} = lim_{x → 0^-} \frac{0}{x} = 0\) 

Hence the function is differentiable at x = 0. So option (4) is true.

Therefore option(3) is correct option.

Continuity & Differentiability Question 13:

Consider f(x) = \(\begin{cases}7 x^2+5 x+3 & ; x<0 \\ 7 x^2+5 x & ; x \geq 0\end{cases}\) Which of the following is true ?

  1. f'''(0) = 0
  2. f'''(x) = 0, ∀ x ∈ ℝ / {0}
  3. f''(0) = 14
  4. All of these

Answer (Detailed Solution Below)

Option 4 : All of these

Continuity & Differentiability Question 13 Detailed Solution

Explanation:

f(x) = \(\begin{cases}7 x^2+5 x+3 & ; x<0 \\ 7 x^2+5 x & ; x \geq 0\end{cases}\)

f'(x) = 14x + 5, ∀ x ∈ ℝ / {0}

So, f''(x) = 14, ∀ x ∈ ℝ / {0}

Hence f'''(x) = 0, ∀ x ∈ ℝ / {0}

(2) is correct

Continuity & Differentiability Question 14:

If f(x) = x|x| and g(x) = x | cos x | Then at x = 0 

  1. f is differentiable but g is not. 
  2. g is differentiable but f is not.
  3. Both f and g are differentiable.
  4. Neither f nor g is differentiable.

Answer (Detailed Solution Below)

Option 3 : Both f and g are differentiable.

Continuity & Differentiability Question 14 Detailed Solution

Explanation:

f(x) = x|x| 

Using definition of differentiability,

f'(0) = \(\lim_{x\to0}\frac{f(x) -f(0)}{x-0}\) = \(\lim_{x\to0}\frac{x|x| -0}{x-0}\) = \(\lim_{x\to0}|x|\) = 0

f is differentiable 

g(x) = x | cos x |

|cos x| = \(\begin{cases}cos x, x< 0\\ cos x, x\geq 0\end{cases}\)

Now x | cos x | = \(\begin{cases}xcos x, x< 0\\ xcos x, x\geq 0\end{cases}\)

So, LHD = \(\lim_{x\to0}\frac{x\cos x -0}{x-0}\) = \(\lim_{x\to0}(\cos x) = 1\) 

RHD = \(\lim_{x\to0}\frac{x\cos x -0}{x-0}\) = \(\lim_{x\to0}(\cos x)\) = 1

As LHD = RHD  at x = 0 so g(x) is differentiable at x = 0.

(3) correct

Continuity & Differentiability Question 15:

Let f be a nonconstant polynomial of degree k and let g ∶ \(\mathbb{R}\) → \(\mathbb{R}\) be a bounded continuous function. Which of the following statements is necessarily true?

  1. There always exists x0 ∈ \(\mathbb{R}\) such that f(x0) = g(x0)
  2. There is no x0 ∈ \(\mathbb{R}\) such that f(x0) = g(x0)
  3. There exists x0 ∈ \(\mathbb{R}\) such that f(x0) = g(x0) if k is even
  4. There exists x0 ∈ \(\mathbb{R}\) such that f(x0) = g(x0) if k is odd

Answer (Detailed Solution Below)

Option 4 : There exists x0 ∈ \(\mathbb{R}\) such that f(x0) = g(x0) if k is odd

Continuity & Differentiability Question 15 Detailed Solution

Explanation:

Option (1): Let k = 2, f(x) = x2 and g(x) = - 1

as  x2  ≠ -1 ∀ x ∈ \(\mathbb{R}\)

So There does not exists x0 ∈ \(\mathbb{R}\) such that f(x0) = g(x0) always.

Option (1) is false.

Option (2): Let k = 1 so f(x) = x and g(x) = 1

as  f(x)  = g(x) for x = 1

So there is x0 = 1 such that f(x0) = g(x0)

Option (2) is false.

Option (1): Let k = 2 which is even, f(x) = x2 and g(x) = - 1

as  x2  ≠ -1 ∀ x ∈ \(\mathbb{R}\)

So There does not exists x0 ∈ \(\mathbb{R}\) such that f(x0) = g(x0) if k is even.

Option (3) is false.

Hence option (4) is true.

Get Free Access Now
Hot Links: teen patti circle teen patti lotus teen patti real cash apk