Riemann Sums and Riemann Integral MCQ Quiz - Objective Question with Answer for Riemann Sums and Riemann Integral - Download Free PDF

Last updated on Jul 4, 2025

Latest Riemann Sums and Riemann Integral MCQ Objective Questions

Riemann Sums and Riemann Integral Question 1:

Let f : [0, 1] → ℝ be a monotonic function. Which of the following statements are true? 

  1. f is Riemann integrable on [0, 1]. 
  2. The set of discontinuities of f cannot contain a non-empty open set. 
  3. f is a Lebesgue measurable function. 
  4. f is a Borel measurable function. 

Answer (Detailed Solution Below)

Option :

Riemann Sums and Riemann Integral Question 1 Detailed Solution

Concept:

  • Monotonic Function: A function \( f:[0,1] \to \mathbb{R} \) is monotonic if it is either non-increasing or non-decreasing throughout the interval.
  • Riemann Integrability: A function is Riemann integrable on a closed interval if the set of its discontinuities has measure zero.
  • Discontinuities of Monotonic Functions: A monotonic function can only have jump discontinuities, and the set of such points is at most countable. Therefore, it cannot contain any non-empty open interval.
  • Lebesgue Measurability: A function is Lebesgue measurable if the preimage of any Borel set is a Lebesgue measurable set. Monotonic functions are always Lebesgue measurable.
  • Borel Measurability: A function is Borel measurable if the preimage of any Borel set lies in the Borel sigma-algebra. All monotonic functions are Borel measurable.

 

Calculation:

Given,

\( f:[0,1] \to \mathbb{R} \) is a monotonic function

Step 1: Check Riemann integrability

⇒ Monotonic functions have at most countably many discontinuities

⇒ Such sets have measure zero

⇒ Riemann integrable

Step 2: Discontinuities and open sets

⇒ Discontinuity set of monotonic function is at most countable

⇒ Countable set cannot contain non-empty open set

⇒ Statement 2 is TRUE

Step 3: Lebesgue measurability

⇒ Every monotonic function is Lebesgue measurable

⇒ Statement 3 is TRUE

Step 4: Borel measurability

⇒ Monotonic functions are Borel measurable

⇒Statement 4 is TRUE

∴ All four statements are TRUE.

Riemann Sums and Riemann Integral Question 2:

Let \(f: [0,1] \to \mathbb{R} \)  be defined as  

\(f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & {if } \quad x \in (0,1], \\ 0, & {if } \quad x = 0. \end{cases} \)

 

  1. f is Riemann Integrable 
  2. the lower  Riemann integrable of f is 1/3
  3. f is not Riemann Integrable 
  4. the lower  Riemann integrable of f is 1/9

Answer (Detailed Solution Below)

Option 1 : f is Riemann Integrable 

Riemann Sums and Riemann Integral Question 2 Detailed Solution

Explanation: 

Given  \(f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & {if }\quad x \in (0,1], \\ 0, & {if } \quad x = 0. \end{cases} \)

1. f(x) is continuous on (0,1] , as  \(x^2 \sin\left(\frac{1}{x}\right) \)  is well-defined for \(x \neq 0 \)

2. At x = 0 , f(0) = 0

To check continuity at x = 0 :

\(\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 \sin\left(\frac{1}{x}\right) \) 

Since  \( |\sin\left(\frac{1}{x}\right)| \leq 1 \) , we have:

\(|f(x)| \leq x^2 \quad {and } \lim_{x \to 0^+} x^2 = 0 \) 

Thus, f(x) is continuous at x = 0 

Riemann Integrability : 

To show that f(x) is Riemann integrable on [0,1], recall the sufficient condition:

If f(x) is bounded and continuous almost everywhere (or has a finite number of discontinuities),

it is Riemann integrable.

Since f(x) is continuous on [0,1], it is Riemann integrable

Hence Option(1) is the correct answer.

Riemann Sums and Riemann Integral Question 3:

Define f:[0,1] → [0,1] by \(f(x)=\left\{\begin{array}{ll} 1 & \text { if } x=0, \\ \frac{1}{n} & \text { if } x=\frac{m}{n} \text { for some } m, n \in \mathbb{N} \text { with } m \leq n \text { and } \operatorname{gcd}(m, n)=1, \\ 0 & \text { if } x \in[0,1] \text { is irrational. } \end{array}\right.\) and define g:[0,1] → [0,1] by \(g(x)=\left\{\begin{array}{ll} 0 & \text { if } x=0 \\ 1 & \text { if } x \in(0,1] \end{array}\right.\) Then which of the following is/are true?

  1. f is Riemann integrable on [0, 1].
  2. g is Riemann integrable on [0, 1].
  3. The composite function f ∘ g is Riemann integrable on [0, 1].
  4. The composite function g ∘ f is Riemann integrable on [0, 1].

Answer (Detailed Solution Below)

Option :

Riemann Sums and Riemann Integral Question 3 Detailed Solution

Explanation:

1. \(f(x)=\left\{\begin{array}{ll} 1 & \text { if } x=0, \\ \frac{1}{n} & \text { if } x=\frac{m}{n} \text { for some } m, n ∈ \mathbb{N} \text { with } m \leq n \text { and } \operatorname{gcd}(m, n)=1, \\ 0 & \text { if } x ∈[0,1] \text { is irrational. } \end{array}\right.\)

Since f is discontinuous at all rational

⇒ f has countable discontinuity 

⇒ f is Riemann Integrable 

⇒ Option(1) is correct 

2. \(g(x)=\left\{\begin{array}{ll} 0 & \text { if } x=0 \\ 1 & \text { if } x ∈(0,1] \end{array}\right.\)

g is discontinuous only at x = 0 

⇒ g is also Riemann  integrable 

⇒Option(2) is correct 

3. Since f(g(x)) = 1

f(g(x)) = f ∘ g (x) is also Riemann integrable 

⇒ Option(3) is correct

4. g ∘ f(x) \(\left\{\begin{array}{ll} 0 & \text { if } f(x) =0 \\ 1 & \text { if } f(x) ∈(0,1] \end{array}\right. \) = \(\left\{\begin{array}{ll} 0 & \text { if } x ∈ \mathbb{Q}^c∩ [0, 1] \\ 1 & \text { if } x ∈ \mathbb{Q}∩ [0, 1] \end{array}\right. \)

⇒ g ∘ f has uncountable discontinuity 

⇒  g ∘ f  is not Riemann integrable 

⇒ Option(4) is not correct 

Hence Option(1) , Option(2) and Option(3)  are correct.

Riemann Sums and Riemann Integral Question 4:

Given:  \( ∫_{0}^{∞} e^{-x} x^{n-1} dx \)

Determine the convergence or divergence of the integral for different values of n:

 

  1. The integral is convergent when 0 ≤ n ≤ 2.
  2. The integral is divergent when n ≤ 3.
  3. The integral is divergent when n ≥ 1.
  4.  The integral is convergent when n ≥ 1.

Answer (Detailed Solution Below)

Option 4 :  The integral is convergent when n ≥ 1.

Riemann Sums and Riemann Integral Question 4 Detailed Solution

Explanation:

This integral is known as the Gamma function Γ(n):

Γ(n) = \( ∫_{0}^{∞} e^{-x} x^{n-1} dx \)

The Gamma function converges for n > 0

Therefore, The integral is convergent when n ≥ 1

Also, When n > 0, the integral converges

When n ≤ 0, the integral diverges

Hence Option(4) is the correct answer.

Riemann Sums and Riemann Integral Question 5:

Consider the following statement :

Statement A: If a Function is increasing in an interval , It is not increasing in some of its sub-interval.

Statement B: Every monotonic increasing  function is  Riemann integrable 

  1. Both the statement are correct
  2. Only Statement A is correct
  3. Only Statement B is correct 
  4. Both the statement are false 

Answer (Detailed Solution Below)

Option 3 : Only Statement B is correct 

Riemann Sums and Riemann Integral Question 5 Detailed Solution

Explanation :

Let us assume function f is increasing function on [a, b]

Now for a given positive number ε; there exists a partition 

P = {a = x₀, x₁, x₂, xn = b} of [a, b] such that

(xᵣ - xᵣ₋₁) < ε / [f(b) - f(a) + 1] for r = 1, 2, , n

Since, the function f being increasing on [a, b] it is bounded

and increasing on each sub interval [xᵣ₋₁, xᵣ]

then, Mᵣ = f(xᵣ) and  mᵣ = f(xᵣ₋₁)

Hence, for this partition P, we have

U(P, f) - L(P, f) = Σ(Mᵣ - mᵣ)(xᵣ - xᵣ₋₁) < ε / [f(b) - f(a) + 1] Σ |f(xᵣ) - f(xᵣ₋₁)|

which implies

U(P, f) - L(P, f)  < ε / [f(b) - f(a) + 1] [f(xₙ) - f(x₀)]

which implies U(P, f) - L(P, f)  < ε / [f(b) - f(a) + 1] [f(b) - f(a)] [Since x₀ = a, xₙ = b]

thus, U(P, f) - L(P, f) < ε

that is, the function f is Riemann integrable on [a, b]. 

⇒ Statement B is correct

Hence Option(3) is the correct answer

Top Riemann Sums and Riemann Integral MCQ Objective Questions

Riemann Sums and Riemann Integral Question 6:

Let R[0, 1] denote the set of Riemann integrable function defined on [0, 1]. Which of the following is not satisfied by function d defined on R[0, 1] by

d(f, g) = \(\int_0^1|f(x)-g(x)| d x \) ?

  1. d(f, f) = 0
  2. d(f, g) ≥ 0
  3. d(f, g) > 0 iff f ≠ g
  4. d(f, g) = d(g, f) & d(f, g) ≤ d(f, h) + d(h, g)

Answer (Detailed Solution Below)

Option 3 : d(f, g) > 0 iff f ≠ g

Riemann Sums and Riemann Integral Question 6 Detailed Solution

Explanation:

(1): d(f, f) = \(\int_0^1|f(x)-f(x)| d x \) = 0

(2): d(f, g) ≥ 0 satisfied 

(4): d(f, g) = d(g, f) & d(f, g) ≤ d(f, h) + d(h, g) satisfied as d satisfy symmetric property and triangular property.

(3): let \(f(x)=1 \)  if \(x \in [0,1]\)

      and  \(g(x)=\begin{cases}1, x\in [0, 1)\\2, x = 1\end{cases}\) 

then  \(f,g \in R[0,1] \) with  \(f \neq g\) 

 but    \(d(f,g)=\) \(\int_0^1|f(x)-g(x)| d x \)

                    \(=\int_0^1|1-1| d x\) = 0 

Here d(f, g) = 0 for f ≠ g

Therefore correct answer is option :3

Riemann Sums and Riemann Integral Question 7:

If f: [a,b] → R, is continuous then which of the following is correct;

  1. f is integrable on R
  2. f is integrable on R - [a, b]
  3. f must be integrable on [a, b]
  4. f is need not integrable on [a, b]

Answer (Detailed Solution Below)

Option 3 : f must be integrable on [a, b]

Riemann Sums and Riemann Integral Question 7 Detailed Solution

Concept:

A bounded function on a compact interval [a, b] is Riemann integrable if and only if it is continuous almost everywhere.

Explanation:

 f: [a, b] → R, is continuous then f must be integrable on [a, b]

(3) is correct

Riemann Sums and Riemann Integral Question 8:

What are the names numbers U(P, f) and L(P, f)?

  1. Upper and lower Riemann integrals
  2. Supremum and infimum
  3. Upper and lower bound
  4. Upper and lower Reimann sums

Answer (Detailed Solution Below)

Option 4 : Upper and lower Reimann sums

Riemann Sums and Riemann Integral Question 8 Detailed Solution

Explanation:

In Reiman Integral, if f(x) is a function and P is a partition on a closed interval then U(P, f) is called upper Reimann sum, and L(P, f) is called lower Reimann sum.

(4) is correct

Riemann Sums and Riemann Integral Question 9:

Evaluate \(\lim_{n\to\infty}\sum_{k=0}^n\frac{n}{k^2+n^2}\)

  1. π/2
  2. π
  3. π/8
  4. π/4

Answer (Detailed Solution Below)

Option 4 : π/4

Riemann Sums and Riemann Integral Question 9 Detailed Solution

Explanation:

\(\lim_{n\to\infty}\sum_{k=0}^n\frac{n}{k^2+n^2}\)

\(\lim_{n\to\infty}\sum_{k=0}^n\frac{n}{n^2(1+\frac{k^2}{n^2})}\)

\(\lim_{n\to\infty}\frac1n\sum_{k=0}^n\frac{1}{(1+\frac{k^2}{n^2})}\)

\(\int_0^1\frac1{1+x^2}dx\)

\([\tan^{-1}x]_0^1\)

π/4

(4) is correct

Riemann Sums and Riemann Integral Question 10:

Let f(x) is defined by f(x) = \(\begin{cases}x^2, x \text{ is rational}\\x^3, x \text{ is irrational}\end{cases}\) , x ∈ [0, 1]

  1. f is Riemann integrable on [0, 1] and \(\int_0^a f(x)dx\) = 1/3
  2. f is Riemann integrable on [0, 1] and \(\int_0^a f(x)dx\)​ = 1/4
  3. f is not Riemann integrable on [0, 1]
  4. none of the above

Answer (Detailed Solution Below)

Option 3 : f is not Riemann integrable on [0, 1]

Riemann Sums and Riemann Integral Question 10 Detailed Solution

Concept:

A function f is Riemann integral if and only if f(x) has countable points of discontinuity.

Explanation: 

f(x) = \(\begin{cases}x^2, x \text{ is rational}\\x^3, x \text{ is irrational}\end{cases}\) , x ∈ [0, 1]

So f is continuous only on 0, 1

Therefore f has an uncountable number of points of discontinuity in [0, 1]

Hence f is not Riemann integrable on [0, 1]

(3) is correct

Riemann Sums and Riemann Integral Question 11:

If the function is defined as \(f(x) = \begin{cases} x & x \in [0,1] \cap Q \\ 1-x & x \in [0,1] \cap Q^c \\ \end{cases}\) then 

  1. f(x) is Riemann Integrable on [0,1]
  2. f(x) is not Riemann Integrable on [0,1]
  3. f(x) is continuous at more than one points
  4. f(x) is continuous at exactly two points

Answer (Detailed Solution Below)

Option 2 : f(x) is not Riemann Integrable on [0,1]

Riemann Sums and Riemann Integral Question 11 Detailed Solution

Concept -

If the function \(f(x) = \begin{cases} h(x) & x \in [0,1] \cap Q \\ g(x) & x \in [0,1] \cap Q^c \\ \end{cases}\) then f(x) is continuous at those points which satisfied the equation h(x) = g(x). 

If function f(x) is not continuous at uncountable points then f(x) is not Riemann Integrable.

Explanation -

We have \(f(x) = \begin{cases} x & x \in [0,1] \cap Q \\ 1-x & x \in [0,1] \cap Q^c \\ \end{cases}\)

So f(x) is continuous only at x = 1 - x ⇒ 2x = 1 ⇒ x = 1/2

Hence function is continuous only at one point and discontinuous at uncountable( infinite points).

So function f(x) is not Riemann Integrable on [0,1].

Hence option(2) is correct.

Riemann Sums and Riemann Integral Question 12:

If the function \(f: R \to R\) is defined as  f(x) = [x] where [.] represents the greatest integer function then choose the correct option? 

  1. f(x) is continuous on R
  2. f(x) is differentiable on R
  3. f(x) is Riemann Integrable 
  4. f(x) is not Riemann Integrable 

Answer (Detailed Solution Below)

Option 3 : f(x) is Riemann Integrable 

Riemann Sums and Riemann Integral Question 12 Detailed Solution

Concept -

(1) Every monotone function has at most countable discontinuous points.

(2) If the function f(x) has countable discontinuous points then f(x) is Riemann Integrable. 

Explanation -

we have the function  f(x) = [x] and we all know the graph of the function given below

F2 Teaching Savita 05-1-24 D1

From the above graph -

Function f(x) is clearly discontinuous at integer point because the graph is broken at all the integer points. and it is also increasing function.

Hence f(x) is Riemann integrable 

So option(3) is correct.

Riemann Sums and Riemann Integral Question 13:

If f(x) be defined on (0, 2) as follows

f(x) = x + x2, when x is rational 

= x2 + x3, when x is irrational 

  1. the value of upper Riemann integrals in (0, 2) is 8/3
  2. the value of upper Riemann integrals in (0, 2) is 83/12
  3. the value of lower Riemann integrals in (0, 2) is 5/3
  4. the value of lower Riemann integrals in (0, 2) is 5/12

Answer (Detailed Solution Below)

Option 2 : the value of upper Riemann integrals in (0, 2) is 83/12

Riemann Sums and Riemann Integral Question 13 Detailed Solution

As, \((x+x^2)-(x^2+x^3)=x-x^3\)

\(=x(2-x^2)\)

So, (x + x2)-(x2+x3)\(\left\{\begin{matrix} >0, \ \text{if} \ 0 < x < 1 \\ < 0, \ \text{if} \ 1 < x < 2 \end{matrix}\right.\)

if M, and m, be the upper and lower bounds of the given 

funtion f(x) in ir respectively wherer Ir has its usual meaning,

then for all value of r, we have

Mr = \(\left\{\begin{matrix} {x + x^2}, \ \text{if} \ 0 < x < 1 \\ {x^2+x^3}, \ \text{if} \ 1 < x < 2 \end{matrix}\right.\)

and let \(ϕ(x)=\frac{1}{x^{1-m}}\)

Hence \(\frac{fx}{ϕ(x)\rightarrow1} \rm as \)\(x \rightarrow 0\)

as \(\int^{-1/2}_0ϕ (x)dx=\int^{1/2}_0\frac{1}{x^1-m}dx\)

is convergent at 0, if and only if,

1 - m < 1

⇔ 0 < m

⇒ \(\int^{1/2}_0x^{m-1}(1-x)^{(n-1)}dx\)

is converget at 0, if and only if, m > 0

Convergence at 1 We have,

f'(x) = xm-1(1-x)n-1

\(=\frac{x^{m-1}}{(1-x)^{1-n}}\)

and let ϕ (x) = \(\frac{1}{1-x^{1-n}}\)

Hence \(\frac{f(x)}{ϕ(x)}\rightarrow1\) as \(x \rightarrow 1\)

as \(\int^1_{1/2} \phi (x) dx =\int^{1}_{1/2}\frac{1}{(1-x)^{1-n}}dx\)

is convergent, if and only if

1 - n < 1 ⇔ 0 < n

⇒ \(\int^1_{1/2}x^{m-1}(1-x)^{n-1}dx\)

converges if and only if

n > 0

Thus, \(\int^1_{x}x^{m-1}(1-x)^{n-1}dx\) exists for opsitive values of m, n only.

and mr\(\left\{\begin{matrix} x^2+x^3, \ \text{if} \ 0 < x < 1 \\ x+x^2, \ \text{if} \ 1 < x < 2 \end{matrix}\right.\)

Hence, the upper Riemann itegral is

\(= \int^1_0(x+x^2)dx+\int^2_1(x^2+x^3)dx\)

\(=\left(\frac{x^2}{2}+\frac{x^3}{3}\right)^1_0+\left(\frac{x^3}{3}+\frac{x^4}{4}\right)^2_1\)

\(=\left(\frac{1}{2}+\frac{1}{3}\right)+\left[\left\{\left(\frac{8}{3}\right)+\left(\frac{16}{4}\right)\right\}- \left(\frac{1}{3}+\frac{1}{4}\right)\right]\)

=\(\left(\frac{83}{12}\right)\)

and the lower Riemann intergral is

\(=\int^1_0(x^2+x^3)dx + \int^2_1(x+x^2)dx\)

\(=\left(\frac{x^3}{3}+\frac{x^4}{4}\right)^1_0+\left(\frac{x^2}{2}+\frac{x^3}{3}\right)^2_1\)

\(=\left[\left(\frac{1}{3}+\frac{1}{4}\right)+[\{\frac{4}{2}+\frac{8}{3}\}-\left(\frac{1}{2}+\frac{1}{3}\right)\right]\)

\(=\frac{53}{12}\)

Riemann Sums and Riemann Integral Question 14:

Let \(\chi_A(x)\) denotes the function which is 1 if x ∈ A and 0 otherwise. Consider f(x) = \(\sum_{n=1}^{200}\frac{1}{n^6}\chi_{[0, \frac n{200}]}(x)\), x ∈ [0, 1]. Then which of the following is NOT correct

  1. f(x) is Riemann integral on [0, 1]
  2. f(x) is Lebesgue integral on [0, 1]
  3. f(x) is continuous function on [0, 1]
  4. f(x) is monotone function on [0, 1]

Answer (Detailed Solution Below)

Option 3 : f(x) is continuous function on [0, 1]

Riemann Sums and Riemann Integral Question 14 Detailed Solution

Concept:

A function f(x) is Reimann integrable if and only if it has finite numbes of points of discontinuities

Explanation:

f(x) = \(\sum_{n=1}^{200}\frac{1}{n^6}\chi_{[0, \frac n{200}]}(x)\),  \(\chi_A(x)\) denotes the function which is 1 if x ∈ A and 0 otherwise

So f(x) = \(\begin{cases}\frac{1}{1^6}+\frac{1}{2^6}+...+\frac{1}{200^6}, 0\leq x\leq \frac{1}{200}\\ \frac{1}{2^6}+...+\frac{1}{200^6}, \frac{1}{200}\leq x\leq \frac{2}{200}\\...........................\\ \frac{1}{200^6}, \frac{199}{200}\leq x\leq \frac{200}{200}\end{cases}\)................((i)

So here we can see that f(x) is not continuous at all points \(\frac{n}{200}\), n = 1, 2, ..., 200

(3) is NOT correct

So here we can see that f(x) has a finite number of points of discontinuity.

Hence f(x) is Riemann integral on [0, 1]

(1) is correct

Every Riemann integral is Lebesgue integral

So (2) is correct

Also from (i) we can see that f(x) is monotonic

(4) is correct

Riemann Sums and Riemann Integral Question 15:

If f(x) = 1/q for any rational number x and 0 otherwise, then find the lower integral?

  1. 6
  2. 2
  3. 0
  4. 1

Answer (Detailed Solution Below)

Option 3 : 0

Riemann Sums and Riemann Integral Question 15 Detailed Solution

Solution-

Let [a,b] be the given integral A Partition P of [a,b] is a finite set of points 

\(a = x_o \leq x_1\leq x_2... 0= b\)

\(L(P,f) = \sum_{i=1}^{n} m_i \Delta x_i\)

Here infimum in x and 0 is o so \(\frac{1}{q}\) at infimum is 0 

then, \(L(P,f) = 0\) 

Therefore, Correct Option is Option 3).

Get Free Access Now
Hot Links: teen patti cash teen patti bodhi teen patti vungo