Real Number System MCQ Quiz in বাংলা - Objective Question with Answer for Real Number System - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Apr 8, 2025

পাওয়া Real Number System उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Real Number System MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Real Number System MCQ Objective Questions

Top Real Number System MCQ Objective Questions

Real Number System Question 1:

Let \(\mathbb{N}\) = {1, 2, 3, ...} be the set of natural numbers. Which of the following functions from \(\mathbb{N}\) × \(\mathbb{N}\) to \(\mathbb{N}\) are injective?

  1. f1(m, n) = 2m 3n
  2. f2(m, n) = m2 + m + n
  3. f3(m, n) = m3 + n3
  4. f4(m, n) = m n3

Answer (Detailed Solution Below)

Option :

Real Number System Question 1 Detailed Solution

Concept:

A function f: \(\mathbb{N}\) × \(\mathbb{N}\) → \(\mathbb{N}\) is said to be injective if (m1, n1) ≠ (m2, n2) such that f((m1, n1)) ≠ f(m2, n2) for (m1, n1), (m2, n2∈ \(\mathbb{N}\) × \(\mathbb{N}\)

Explanation:

(1): f1(m, n) = 2m 3n

Let (m1, n1), (m2, n2 \(\mathbb{N}\) × \(\mathbb{N}\) such that 

f1(m1, n1) = f1(m2, n2)

⇒ 2m1 3n1 = 2m2 3n2

⇒ 2m1-m2 = 3n2 -n1 

⇒ m1 m2 = n- n1 = 0  

⇒ m1 m2 and n= n1 

⇒ (m1, n1) = (m2, n2)

Option (1) is correct

(2): f2(m, n) = m2 + m + n

 

Option (2) is true

(3): f3(m, n) = m3 + n3

(2, 1) ≠ (1, 2)

but f3(2, 1) = 2+ 13 = 9 and f3(1, 2) = 2+ 13 = 9

So f3(2, 1) = f3(1, 2), not injective

Option (3) is false 

(4): f4(m, n) = m n3

(1, 2) ≠ (8, 1)

but f4(1, 2) = (1)(23) = 8 and f4(8, 1) = (8)(1)3 = 8

So f4(1, 2) = f4(8, 1), not injective

Option (4) is false 

Real Number System Question 2:

Let x, y be real numbers such that 0 < y ≤ x and let n be a positive integer. Which of the following statements are true?

  1. nyn-1 (x - y) ≤ xn - yn
  2. nxn-1 (x - y) ≤ xn - yn
  3. nyn-1 (x - y) ≥ xn - yn
  4. nxn-1 (x - y) ≥ xn - yn

Answer (Detailed Solution Below)

Option :

Real Number System Question 2 Detailed Solution

Explanation:

an − bn = (a − b) (an−1 + an−2 b + an−3 b2 + … + bn−1)

Now, xn − yn = (x − y) (xn−1 + xn−2 y + xn−3 y2 + … + yn−1) ≤ (x − y) (xn−1 + xn−2⋅x + xn−3 x2 + … + xn−1)

⇒ xn − yn ≤ (x − y) (xn−1 + xn−1 + … + xn−1) (∵ x ⩾ y)

⇒ xn − yn ≤ n xn−1 (x − y) -

option (4) correct, option (2) Incorrect.

Also, xn − yn ⩾ (x − y) (yn−1 + yn−2 ⋅ y + yn−3 y2 + … + yn−1) (: y ≤ x)

⇒ xn − yn ⩾ (x − y) (yn−1 + yn−1 + … + yn−1)

⇒ xn − yn ⩾ n yn−1(x − y) - 

option (1) correct, option (3) Incorrect.

Also, for opt (2), Take x = 3, y = 2, n = 2

then 2 ⋅ 32−1 (3 − 2) = 2 ⋅ 3 ⋅ 1 = 6 = n xn−1 (x − y)

and xn − yn = 32 − 22 = 9 − 4 = 5

then 6 \(\nleq\) 5 ⇒ n xn−1 (x − y) \(\nleq\) xn − yn. option -

(2) False.

For option (3)

n yn−1 (x − y) = 2 ⋅ 22−1 (3 − 2) = 2 ⋅ 2 ⋅ 1 = 4

and xn − yn = 32 − 22 = 9 − 4 = 5

then 4 \(\ngeq\) 5 ⇒ nyn−1 (x − y)\(\ngeq\) xn − yn

option (3) False.

Get Free Access Now
Hot Links: teen patti all teen patti royal teen patti master update