सरलीकरण MCQ Quiz in मराठी - Objective Question with Answer for Simplification - मोफत PDF डाउनलोड करा
Last updated on Jul 3, 2025
Latest Simplification MCQ Objective Questions
सरलीकरण Question 1:
\(\rm \sqrt{(9+\sqrt{(36+\sqrt{(144+\sqrt{625)})})}}\) याचे मूल्य शोधा:
Answer (Detailed Solution Below)
Simplification Question 1 Detailed Solution
गणना
\(\rm \sqrt{(9+\sqrt{(36+\sqrt{(144+\sqrt{625)})})})}\)
\(\rm \sqrt{(9+\sqrt{(36+\sqrt{(144+25))})})}\)
\(\rm \sqrt{(9+\sqrt{(36+13))})}\)
\(\rm \sqrt{(9+7)}\)
4
उत्तर 4 आहे.
सरलीकरण Question 2:
1980 ÷ 9 + \(\left[-77+\left\{-1980+\left(\frac{1}{4} \text { of } 7920\right)\right\}\right] \) चे मूल्य किती आहे?
Answer (Detailed Solution Below)
Simplification Question 2 Detailed Solution
दिलेले आहे:
1980 ÷ 9 + [-77 + {-1980 + (7920 च्या 1/4)}]
वापरलेली संकल्पना:
BODMAS नियम
गणना:
1980 ÷ 9 + [-77 + {-1980 + (1/4 × 7920)}]
⇒ 1980 ÷ 9 + [-77 + {-1980 + (7920/4)}]
⇒ 1980 ÷ 9+ [-77 + {-1980 + (1980)}]
⇒ 1980 ÷ 9+ [-77 + {-1980 + 1980}]
⇒ 1980 ÷ 9 + [-77 + {0}]
⇒ 220 + [-77]
⇒ 220 - 77 = 143
∴ समीकरणाचे सरलीकृत मूल्य 143 आहे.
सरलीकरण Question 3:
\(\frac{2}{1 \times 3}+\frac{2}{3 \times 5}+\frac{2}{5 \times 7} \ldots . .+\frac{2}{45 \times 47} \text { }\)चे मूल्य किती आहे?
Answer (Detailed Solution Below)
Simplification Question 3 Detailed Solution
दिलेल्याप्रमाणे:
पदावली : \(\frac{2}{1 \times 3} + \frac{2}{3 \times 5} + \frac{2}{5 \times 7} + \ldots + \frac{2}{45 \times 47} \)
वापरलेले सूत्र:
आंशिक अपूर्णांक विघटन वापरून प्रत्येक पद सरळ रूपात करा.
गणना:
प्रत्येक पद असे लिहिता येते:
\(\frac{2}{n(n+2)} = \frac{1}{n} - \frac{1}{n+2}\)
हे दिलेल्या मालिकेत लागू करून:
\(\left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \left( \frac{1}{5} - \frac{1}{7} \right) + \ldots + \left( \frac{1}{45} - \frac{1}{47} \right)\)
मधली सर्व पदे रद्द होतात आणि आपल्याला मिळते:
\(1 - \frac{1}{47} = \frac{46}{47}\)
मालिकेचे मूल्य \(\frac{46}{47} \) आहे.
सरलीकरण Question 4:
जर (x - y) चे 70% = (x + y) चे 30%, तर x चे किती टक्के म्हणजे y आहे?
Answer (Detailed Solution Below)
Simplification Question 4 Detailed Solution
दिलेले आहे
(x - y) चे 70% = (x + y) चे 30%
निरसन
7(x - y) = 3(x + y)
7x - 7y = 3x + 3y
4x = 10y
x = 2.5y
y = x/2.5 = 0.4x
म्हणून, y हा x च्या 40% आहे.
सरलीकरण Question 5:
\(\sqrt{\dfrac{1.96\times 0.64}{1.6 \times 4.9}}\) चे मूल्य शोधा
Answer (Detailed Solution Below)
Simplification Question 5 Detailed Solution
गणना :
\(\sqrt{\dfrac{1.96\times 0.64}{1.6 \times 4.9}}\)
\( ⇒ \;\sqrt {\frac{{{{\left( {\frac{{14}}{{10}}} \right)}^2} \times \;{{\left( {\frac{8}{{10}}} \right)}^2}}}{{\frac{{{{\left( 4 \right)}^2}}}{{10}}\; \times \frac{{{{\left( 7 \right)}^2}}}{{10}}}}} \)
\( ⇒ \;\frac{{\frac{{14}}{{10}}\;\; \times \;\frac{8}{{10}}}}{{\frac{{28}}{{10}}}}\)
⇒ 4/10 = 0.4
∴ 0.4
Top Simplification MCQ Objective Questions
खालीलपैकी कोणती संख्या सर्वात मोठी आहे?
\(0.7,\;0.\bar 7,\;0.0\bar 7,0.\overline {07}\)
Answer (Detailed Solution Below)
Simplification Question 6 Detailed Solution
Download Solution PDF0.7
\(0.\bar 7 = 0.77777 \ldots\)
\(0.0\bar 7 = 0.077777 \ldots\)
\(0.\overline {07} = 0.070707 \ldots\)
आता, 0.7777… किंवा \(0.\bar 7\) ही संख्या सर्वात मोठी आहे.
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\) चे मूल्य किती आहे?
Answer (Detailed Solution Below)
Simplification Question 7 Detailed Solution
Download Solution PDFउकल:
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 25/2 + 37/3 + 73/6
= (75 + 74 + 73)/6
= 222/6
= 37
Shortcut Trick
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)
= 36 + 1 = 37
(8 + 2√15)चे वर्गमूळ काय ?
Answer (Detailed Solution Below)
Simplification Question 8 Detailed Solution
Download Solution PDFवापरलेले सुत्र:
(a + b)2 = a2 + b2 + 2ab
गणना:
दिलेली पदावली आहे:
\(\sqrt {8\; + \;2\sqrt {15} \;} \)
⇒ \(\sqrt {5\; + \;3\; + \;2\times \sqrt 5 \times \sqrt 3 \;} \)
⇒ \(\sqrt {{{(\sqrt 5 )}^2}\; + \;{{\left( {\sqrt 3 } \right)}^2}\; + \;2 \times \sqrt 5 \times \sqrt 3 \;} \)
⇒ \(\sqrt {{{\left( {\;\sqrt 5 \; + \;\sqrt 3 \;} \right)}^2}\;} \)
⇒ \(\sqrt 5 + \sqrt 3 \)
सरलीकरणात \(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \) पर्यंत कमी होते
Answer (Detailed Solution Below)
Simplification Question 9 Detailed Solution
Download Solution PDF\(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \)
त्याचप्रमाणे,
a2 - b2 = (a - b) ( a + b)
\(\begin{array}{l} \Rightarrow \sqrt {\left( {0.65 + 0.16} \right)\left( {0.65 - 0.16} \right)} \\ \Rightarrow \sqrt {\left( {0.81} \right)\left( {0.49} \right)} \\ \Rightarrow \sqrt {\left( {0.9} \right)\left( {0.9} \right) \times \left( {0.7} \right)\left( {0.7} \right)} \end{array}\)
⇒ 0.9 × 0.7 = 0.63
∴ उत्तर 0.63 आहे
(10 + √25) (12 - √49) चे वर्गमूळ आहे:
Answer (Detailed Solution Below)
Simplification Question 10 Detailed Solution
Download Solution PDFसंकल्पना:
आपण गुणखंडन पद्धतीने x शोधू शकतो.
हिशोब:
√[(10 + √25) (12 - √49)]
⇒ √(10 + 5)(12 – 7)
⇒ √(15 × 5)
⇒ √(3 × 5 × 5)
⇒ 5√3Answer (Detailed Solution Below)
Simplification Question 11 Detailed Solution
Download Solution PDFदिलेले आहे,
23 × 34 × 1080 ÷ 15 = 6x
⇒ 23 × 34 × 72 = 6x
⇒ 23 × 34 × (2 × 62) = 6x
⇒ 24 × 34 × 62 = 6x
⇒ (2 × 3)4 × 62 = 6x [∵ xm × ym = (xy)m]
⇒ 64 × 62 = 6x
⇒ 6(4 + 2) = 6x
⇒ x = 6
जर √3n = 729, तर n चे मूल्य शोधा.
Answer (Detailed Solution Below)
Simplification Question 12 Detailed Solution
Download Solution PDFदिलेले आहे:
√3n = 729
वापरलेले सूत्र:
(xa)b = xab
जर xa = xb तर a = b
गणना:
√3n = 729
⇒ √3n = (32)3
⇒ (3n)1/2 = (32)3
⇒ (3n)1/2 = 36
⇒ n/2 = 6
∴ n = 12
Answer (Detailed Solution Below)
Simplification Question 13 Detailed Solution
Download Solution PDFदिलेले समीकरण,
(81.84 + 118.16) ÷ 53 = 1.2 × 2 + ?
⇒ 200 ÷ 53 = 1.2 × 2 + ?
⇒ 200 ÷ 125 = 1.2 × 2 +?
⇒ 1.6 = 2.4 + ?
⇒ ? = -0.8Answer (Detailed Solution Below)
Simplification Question 14 Detailed Solution
Download Solution PDFजर (3 + 2√5)2 = 29 + K√5, तर K चे मूल्य किती?
Answer (Detailed Solution Below)
Simplification Question 15 Detailed Solution
Download Solution PDFपद्धत I: (3 + 2√5)2
= (32 + (2√5)2 + 2 × 3 × 2√5)
= 9 + 20 + 12√5 = 29 + 12√5
तुलना केल्यास, 29 + 12√5 = 29 + K√5
आपल्याकडे,
K = 12
Additional Information
29 + 12√5 = 29 + K√5
⇒ K√5 = 29 - 29 + 12√5
⇒ K√5 = 12√5
∴ K = 12